【C++】用红黑树封装map和set

2024-04-09 22:20
文章标签 c++ 封装 set map 用红 黑树

本文主要是介绍【C++】用红黑树封装map和set,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

我们之前学的map和set在stl源码中都是用红黑树封装实现的,当然,我们也可以模拟来实现一下。在实现之前,我们也可以看一下stl源码是如何实现的。我们上篇博客写的红黑树里面只是一个pair对象,这对于set来说显然是不合适的,所以要想让一个红黑树的代码同时支持map和set,就用上模板就可以了

我们来看看stl源码中是如何实现的

前两个模板参数是两个类型,就是我们要在set或map中放入什么

set不是只需要放入一个吗?所以,set在传参数的时候是这么传的

它的前两个传的全是Key,它这么实现还是为了兼容map,map传的是什么呢?我们再来看一下

传的一个是Key,一个是pair类的对象。那pair中不是已经有Key了吗,为什么还要传Key呢?因为一个最简单的原因之一find函数的参数是Key。

那么看第三个模板参数keyofvalue,传这个类型是为了从value中找到key,因为我们树这个类传给节点类的时候只传了value,如下图:

因为map中value是一个pair对象,set中value就是key,它们的获取方式不一样,所以传这个参数是为了实现仿函数,来取出key值用于比较

那么了解了这个大体的结构之后,下一个就是要实现我们的迭代器了,我们其实可以在红黑树中实现一个树形的迭代器,然后map和set再封装一层就行了,其实我们的迭代器就是一个类,它用来实现类似于指针的一些操作所以我们就用指针来当作这个类的成员变量在这个类的基础上实现迭代器的功能。

在实现迭代器的时候,最关键的一个函数就是重载++,这里迭代器++肯定是按中序,因为这样才有意义,有顺序,那么我们如何通过一个节点找到它的中序遍历的下一个节点呢?这其实是有规律的。比如我们看这样一颗红黑树

首先我们中序遍历是左子树 右子树

1.假设这个节点有右子树,那么这个节点之后就是它的右子树的中序的第一个节点,就是右子树中最左边的节点

2.假设这个节点没有右子树,那么走完这个节点以后以这个节点为根的树就走完了,假如它是它父亲的左孩子,那么就该走它的父亲,如果它是它父亲的右孩子,那么它父亲也走完了,就按照此规律走它的爷爷。

有了这个理论基础,我们就可以来实现了。

同样--的话跟++是完全相反的,反过来的遍历顺序就是右子树,根,左子树,然后我们再分别去看这棵树有没有左子树,如果有,那就走左子树中第一个该走的节点,就是左子树中最右节点;如果没有,那就看它是它父亲的什么节点,一直往上找,直到找到它是它父亲的右子树的节点,它父亲就是下一个要遍历的节点。

下面还有一些细节问题,比如说把迭代器写成模板

那么只需要传不同的类型就可以实现const或非const的迭代器

我们const对象要用const版本的迭代器,因为const对象用普通版本的属于权限放大,所以我们要设计const版本的迭代器

我们也要对红黑树的插入函数进行修改,原来插入函数返回一个bool值,但是库中应该是返回一个pair对象,其中first是个迭代器,second是个bool值表示是否新插入

看到这样的代码的时候,这个typename表示后面是一个类型名,因为static静态成员也可以指明类域然后去访问

另外,我们这里为什么传const K呢?因为就算是普通的迭代器我们也不希望key值改变,因为map的key值改了就不满足二叉搜索树了

这是如何使用const_iterator,首先s就是一个普通的map对象,就调用普通版本的begin()

调完之后它返回一个iterator,而我们用的const_iterator去接收的,所以要写个构造函数,用普通迭代器构造出const迭代器

那么下面我们再整体的来展示一下红黑树和map set之间的封装关系

这就是如何用红黑树封装出map和set,下面是所有的代码

RBTree.h

#include<iostream>
#include<assert.h>
using namespace std;enum col {RED,BLACK
};
template<class T>
struct RBTreeNode {RBTreeNode(const T& data):_left(nullptr),_right(nullptr),_parent(nullptr),_data(data),_col(RED){}RBTreeNode* _left = nullptr;RBTreeNode* _right = nullptr;RBTreeNode* _parent = nullptr;T _data;col _col=RED;
};
template<class T,class Ptr,class Ref>
struct RBTreeIterator {typedef RBTreeNode<T> Node;typedef RBTreeIterator<T,Ptr,Ref> self;typedef RBTreeIterator<T,  T*,  T&> iterator;typedef RBTreeIterator<T, const T*, const T&> const_iterator;Node* _node;RBTreeIterator(const iterator& it):_node(it._node) {}RBTreeIterator(Node*node):_node(node){}Ref operator*() {return _node->_data;}Ptr operator->() {return &_node->_data;}bool operator==(const self&s) {return _node == s._node;}bool operator!=(const self& s) {return _node != s._node;}self& operator++() {if (_node == nullptr) {cout << "end()不能++" << endl;assert(false);}if (_node->_right) {//有右子树,那么这个节点之后就是它的右子树的中序的第一个节点,就是右子树中最左边的节点_node = _node->_right;while (_node->_left != nullptr)_node = _node->_left;return *this;}else {//没有右子树,直到找到孩子是父亲左子树的那个父亲节点Node* parent = _node->_parent;while (parent && _node != parent->_left) {parent = parent->_parent;_node = _node->_parent;}_node = parent;return *this;}}self& operator--() {if (_node->_left) {_node = _node->_left;while (_node->_right != nullptr)_node = _node->_right;return *this;}else {Node* parent = _node->_parent;while (parent && _node != parent->_right) {parent = parent->_parent;_node = _node->_parent;}_node = parent;return *this;}}
};template<class K,class V,class Keyofvalue>
class RBTree {typedef RBTreeNode<V> Node;
public:typedef RBTreeIterator<V,V*,V&> iterator;typedef RBTreeIterator<V,const V*,const V&> const_iterator;const_iterator begin()const {Node* cur = _root;while (cur && cur->_left)cur = cur->_left;return const_iterator(cur);}iterator begin() {Node* cur = _root;while (cur&&cur->_left)cur = cur->_left;return iterator(cur);}const_iterator end()const {return const_iterator(nullptr);}iterator end() {return iterator(nullptr);}iterator Find(const K& key) {Keyofvalue kov;Node* cur = _root;while (cur) {if (kov(cur->_data) < key) {cur = cur->_right;}else if (kov(cur->_data) > key) {cur = cur->_left;}else {return iterator(cur);}}return end();}pair<iterator,bool> insert(const V& data) {if (_root == nullptr) {_root = new Node(data);_root->_col = BLACK;return make_pair(iterator(_root),true);}Node* cur = _root;Node* parent = nullptr;Keyofvalue kov;while (cur) {if (kov(cur->_data) < kov(data)) {parent = cur;cur = cur->_right;}else if (kov(cur->_data) > kov(data)) {parent = cur;cur = cur->_left;}else return make_pair(iterator(cur),false);}cur = new Node(data);Node* ret = cur;if (kov(parent->_data) < kov(cur->_data)) {parent->_right = cur;cur->_parent = parent;}else {parent->_left = cur;cur->_parent = parent;}Node* c = cur;Node* p = cur->_parent;Node* g = p->_parent;Node* u = nullptr;while (p && p->_col == RED) {if (p == g->_left)u = g->_right;else u = g->_left;if (u == nullptr || u->_col == BLACK) {if (p == g->_left && c == p->_left) {RotateR(g);p->_col = BLACK;g->_col = RED;}else if (p == g->_right && c == p->_right) {RotateL(g);p->_col = BLACK;g->_col = RED;}else if (p == g->_left && c == p->_right) {RotateL(p);RotateR(g);c->_col = BLACK;g->_col = RED;}else if (p == g->_right && c == p->_left) {RotateR(p);RotateL(g);c->_col = BLACK;g->_col = RED;}else assert(false);break;}else if (u->_col == RED) {p->_col = BLACK;u->_col = BLACK;g->_col = RED;if (g == _root) {g->_col = BLACK;break;}else {c = g;p = c->_parent;g = p->_parent;}}else assert(false);}return make_pair(iterator(ret),true);}void RotateL(Node* parent) {Node* subR = parent->_right;Node* subRL = subR->_left;Node* ppnode = parent->_parent;if (subRL)subRL->_parent = parent;parent->_right = subRL;subR->_left = parent;parent->_parent = subR;if (parent == _root) {_root = subR;subR->_parent = nullptr;}else {subR->_parent = ppnode;if (ppnode->_left == parent)ppnode->_left = subR;else ppnode->_right = subR;}}void RotateR(Node* parent) {Node* subL = parent->_left;Node* subLR = subL->_right;Node* ppnode = parent->_parent;if (subLR)subLR->_parent = parent;parent->_left = subLR;subL->_right = parent;parent->_parent = subL;if (parent == _root) {_root = subL;subL->_parent = nullptr;}else {subL->_parent = ppnode;if (ppnode->_left == parent)ppnode->_left = subL;else ppnode->_right = subL;}}Node* getroot() {return _root;}private:Node* _root = nullptr;
};

MySet.h


namespace jxh {template<class T>class set {typedef RBTreeNode<T> Node;struct keyofvalue {const T& operator()(const T&key) {return key;}};void _inorder(Node* root) {if (root == nullptr)return;_inorder(root->_left);cout << root->_data << endl;_inorder(root->_right);}public:typedef typename RBTree<T, const T, keyofvalue>::iterator iterator;typedef typename RBTree<T, const T, keyofvalue>::const_iterator const_iterator;iterator begin(){return _t.begin();}iterator end(){return _t.end();}const_iterator begin()const{return _t.begin();}const_iterator end()const{return _t.end();}pair<iterator, bool> insert(const T& key){return _t.insert(key);}iterator find(const T& key){return _t.find(key);}void inorder() {_inorder(_t.getroot());}private:RBTree<T,const T,keyofvalue> _t;};

MyMap.h

namespace jxh {template<class K,class V>class map {typedef RBTreeNode<pair<K,V>> Node;struct keyofvalue {const K& operator()(const pair<K,V>& kv) {return kv.first;}};void _inorder(Node* root) {if (root == nullptr)return;_inorder(root->_left);cout << root->_data.first<<" "<<root->_data.second << endl;_inorder(root->_right);}public://typedef RBTreeIterator<pair<K,V>> iterator;typedef typename RBTree<K, pair<const K, V>, keyofvalue>::iterator iterator;typedef typename RBTree<K, pair<const K, V>, keyofvalue>::const_iterator const_iterator;const_iterator begin()const {return _t.begin();}const_iterator end() const{return _t.end();}iterator begin() {return _t.begin();}iterator end() {return _t.end();}pair<iterator, bool> insert(const pair<K, V>& kv){return _t.insert(kv);}iterator find(const K& key){return _t.find(key);}V& operator[](const K& key){pair<iterator, bool> ret = insert(make_pair(key, V()));return ret.first->second;}void inorder() {_inorder(_t.getroot());}private:RBTree<K, pair<const K,V>, keyofvalue> _t;};

这篇关于【C++】用红黑树封装map和set的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/889366

相关文章

【C++ Primer Plus习题】13.4

大家好,这里是国中之林! ❥前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站。有兴趣的可以点点进去看看← 问题: 解答: main.cpp #include <iostream>#include "port.h"int main() {Port p1;Port p2("Abc", "Bcc", 30);std::cout <<

C++包装器

包装器 在 C++ 中,“包装器”通常指的是一种设计模式或编程技巧,用于封装其他代码或对象,使其更易于使用、管理或扩展。包装器的概念在编程中非常普遍,可以用于函数、类、库等多个方面。下面是几个常见的 “包装器” 类型: 1. 函数包装器 函数包装器用于封装一个或多个函数,使其接口更统一或更便于调用。例如,std::function 是一个通用的函数包装器,它可以存储任意可调用对象(函数、函数

C++11第三弹:lambda表达式 | 新的类功能 | 模板的可变参数

🌈个人主页: 南桥几晴秋 🌈C++专栏: 南桥谈C++ 🌈C语言专栏: C语言学习系列 🌈Linux学习专栏: 南桥谈Linux 🌈数据结构学习专栏: 数据结构杂谈 🌈数据库学习专栏: 南桥谈MySQL 🌈Qt学习专栏: 南桥谈Qt 🌈菜鸡代码练习: 练习随想记录 🌈git学习: 南桥谈Git 🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈�

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

06 C++Lambda表达式

lambda表达式的定义 没有显式模版形参的lambda表达式 [捕获] 前属性 (形参列表) 说明符 异常 后属性 尾随类型 约束 {函数体} 有显式模版形参的lambda表达式 [捕获] <模版形参> 模版约束 前属性 (形参列表) 说明符 异常 后属性 尾随类型 约束 {函数体} 含义 捕获:包含零个或者多个捕获符的逗号分隔列表 模板形参:用于泛型lambda提供个模板形参的名

6.1.数据结构-c/c++堆详解下篇(堆排序,TopK问题)

上篇:6.1.数据结构-c/c++模拟实现堆上篇(向下,上调整算法,建堆,增删数据)-CSDN博客 本章重点 1.使用堆来完成堆排序 2.使用堆解决TopK问题 目录 一.堆排序 1.1 思路 1.2 代码 1.3 简单测试 二.TopK问题 2.1 思路(求最小): 2.2 C语言代码(手写堆) 2.3 C++代码(使用优先级队列 priority_queue)

poj 3050 dfs + set的妙用

题意: 给一个5x5的矩阵,求由多少个由连续6个元素组成的不一样的字符的个数。 解析: dfs + set去重搞定。 代码: #include <iostream>#include <cstdio>#include <set>#include <cstdlib>#include <algorithm>#include <cstring>#include <cm

【C++高阶】C++类型转换全攻略:深入理解并高效应用

📝个人主页🌹:Eternity._ ⏩收录专栏⏪:C++ “ 登神长阶 ” 🤡往期回顾🤡:C++ 智能指针 🌹🌹期待您的关注 🌹🌹 ❀C++的类型转换 📒1. C语言中的类型转换📚2. C++强制类型转换⛰️static_cast🌞reinterpret_cast⭐const_cast🍁dynamic_cast 📜3. C++强制类型转换的原因📝

C++——stack、queue的实现及deque的介绍

目录 1.stack与queue的实现 1.1stack的实现  1.2 queue的实现 2.重温vector、list、stack、queue的介绍 2.1 STL标准库中stack和queue的底层结构  3.deque的简单介绍 3.1为什么选择deque作为stack和queue的底层默认容器  3.2 STL中对stack与queue的模拟实现 ①stack模拟实现

c++的初始化列表与const成员

初始化列表与const成员 const成员 使用const修饰的类、结构、联合的成员变量,在类对象创建完成前一定要初始化。 不能在构造函数中初始化const成员,因为执行构造函数时,类对象已经创建完成,只有类对象创建完成才能调用成员函数,构造函数虽然特殊但也是成员函数。 在定义const成员时进行初始化,该语法只有在C11语法标准下才支持。 初始化列表 在构造函数小括号后面,主要用于给