【C++】用红黑树封装map和set

2024-04-09 22:20
文章标签 c++ 封装 set map 用红 黑树

本文主要是介绍【C++】用红黑树封装map和set,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

我们之前学的map和set在stl源码中都是用红黑树封装实现的,当然,我们也可以模拟来实现一下。在实现之前,我们也可以看一下stl源码是如何实现的。我们上篇博客写的红黑树里面只是一个pair对象,这对于set来说显然是不合适的,所以要想让一个红黑树的代码同时支持map和set,就用上模板就可以了

我们来看看stl源码中是如何实现的

前两个模板参数是两个类型,就是我们要在set或map中放入什么

set不是只需要放入一个吗?所以,set在传参数的时候是这么传的

它的前两个传的全是Key,它这么实现还是为了兼容map,map传的是什么呢?我们再来看一下

传的一个是Key,一个是pair类的对象。那pair中不是已经有Key了吗,为什么还要传Key呢?因为一个最简单的原因之一find函数的参数是Key。

那么看第三个模板参数keyofvalue,传这个类型是为了从value中找到key,因为我们树这个类传给节点类的时候只传了value,如下图:

因为map中value是一个pair对象,set中value就是key,它们的获取方式不一样,所以传这个参数是为了实现仿函数,来取出key值用于比较

那么了解了这个大体的结构之后,下一个就是要实现我们的迭代器了,我们其实可以在红黑树中实现一个树形的迭代器,然后map和set再封装一层就行了,其实我们的迭代器就是一个类,它用来实现类似于指针的一些操作所以我们就用指针来当作这个类的成员变量在这个类的基础上实现迭代器的功能。

在实现迭代器的时候,最关键的一个函数就是重载++,这里迭代器++肯定是按中序,因为这样才有意义,有顺序,那么我们如何通过一个节点找到它的中序遍历的下一个节点呢?这其实是有规律的。比如我们看这样一颗红黑树

首先我们中序遍历是左子树 右子树

1.假设这个节点有右子树,那么这个节点之后就是它的右子树的中序的第一个节点,就是右子树中最左边的节点

2.假设这个节点没有右子树,那么走完这个节点以后以这个节点为根的树就走完了,假如它是它父亲的左孩子,那么就该走它的父亲,如果它是它父亲的右孩子,那么它父亲也走完了,就按照此规律走它的爷爷。

有了这个理论基础,我们就可以来实现了。

同样--的话跟++是完全相反的,反过来的遍历顺序就是右子树,根,左子树,然后我们再分别去看这棵树有没有左子树,如果有,那就走左子树中第一个该走的节点,就是左子树中最右节点;如果没有,那就看它是它父亲的什么节点,一直往上找,直到找到它是它父亲的右子树的节点,它父亲就是下一个要遍历的节点。

下面还有一些细节问题,比如说把迭代器写成模板

那么只需要传不同的类型就可以实现const或非const的迭代器

我们const对象要用const版本的迭代器,因为const对象用普通版本的属于权限放大,所以我们要设计const版本的迭代器

我们也要对红黑树的插入函数进行修改,原来插入函数返回一个bool值,但是库中应该是返回一个pair对象,其中first是个迭代器,second是个bool值表示是否新插入

看到这样的代码的时候,这个typename表示后面是一个类型名,因为static静态成员也可以指明类域然后去访问

另外,我们这里为什么传const K呢?因为就算是普通的迭代器我们也不希望key值改变,因为map的key值改了就不满足二叉搜索树了

这是如何使用const_iterator,首先s就是一个普通的map对象,就调用普通版本的begin()

调完之后它返回一个iterator,而我们用的const_iterator去接收的,所以要写个构造函数,用普通迭代器构造出const迭代器

那么下面我们再整体的来展示一下红黑树和map set之间的封装关系

这就是如何用红黑树封装出map和set,下面是所有的代码

RBTree.h

#include<iostream>
#include<assert.h>
using namespace std;enum col {RED,BLACK
};
template<class T>
struct RBTreeNode {RBTreeNode(const T& data):_left(nullptr),_right(nullptr),_parent(nullptr),_data(data),_col(RED){}RBTreeNode* _left = nullptr;RBTreeNode* _right = nullptr;RBTreeNode* _parent = nullptr;T _data;col _col=RED;
};
template<class T,class Ptr,class Ref>
struct RBTreeIterator {typedef RBTreeNode<T> Node;typedef RBTreeIterator<T,Ptr,Ref> self;typedef RBTreeIterator<T,  T*,  T&> iterator;typedef RBTreeIterator<T, const T*, const T&> const_iterator;Node* _node;RBTreeIterator(const iterator& it):_node(it._node) {}RBTreeIterator(Node*node):_node(node){}Ref operator*() {return _node->_data;}Ptr operator->() {return &_node->_data;}bool operator==(const self&s) {return _node == s._node;}bool operator!=(const self& s) {return _node != s._node;}self& operator++() {if (_node == nullptr) {cout << "end()不能++" << endl;assert(false);}if (_node->_right) {//有右子树,那么这个节点之后就是它的右子树的中序的第一个节点,就是右子树中最左边的节点_node = _node->_right;while (_node->_left != nullptr)_node = _node->_left;return *this;}else {//没有右子树,直到找到孩子是父亲左子树的那个父亲节点Node* parent = _node->_parent;while (parent && _node != parent->_left) {parent = parent->_parent;_node = _node->_parent;}_node = parent;return *this;}}self& operator--() {if (_node->_left) {_node = _node->_left;while (_node->_right != nullptr)_node = _node->_right;return *this;}else {Node* parent = _node->_parent;while (parent && _node != parent->_right) {parent = parent->_parent;_node = _node->_parent;}_node = parent;return *this;}}
};template<class K,class V,class Keyofvalue>
class RBTree {typedef RBTreeNode<V> Node;
public:typedef RBTreeIterator<V,V*,V&> iterator;typedef RBTreeIterator<V,const V*,const V&> const_iterator;const_iterator begin()const {Node* cur = _root;while (cur && cur->_left)cur = cur->_left;return const_iterator(cur);}iterator begin() {Node* cur = _root;while (cur&&cur->_left)cur = cur->_left;return iterator(cur);}const_iterator end()const {return const_iterator(nullptr);}iterator end() {return iterator(nullptr);}iterator Find(const K& key) {Keyofvalue kov;Node* cur = _root;while (cur) {if (kov(cur->_data) < key) {cur = cur->_right;}else if (kov(cur->_data) > key) {cur = cur->_left;}else {return iterator(cur);}}return end();}pair<iterator,bool> insert(const V& data) {if (_root == nullptr) {_root = new Node(data);_root->_col = BLACK;return make_pair(iterator(_root),true);}Node* cur = _root;Node* parent = nullptr;Keyofvalue kov;while (cur) {if (kov(cur->_data) < kov(data)) {parent = cur;cur = cur->_right;}else if (kov(cur->_data) > kov(data)) {parent = cur;cur = cur->_left;}else return make_pair(iterator(cur),false);}cur = new Node(data);Node* ret = cur;if (kov(parent->_data) < kov(cur->_data)) {parent->_right = cur;cur->_parent = parent;}else {parent->_left = cur;cur->_parent = parent;}Node* c = cur;Node* p = cur->_parent;Node* g = p->_parent;Node* u = nullptr;while (p && p->_col == RED) {if (p == g->_left)u = g->_right;else u = g->_left;if (u == nullptr || u->_col == BLACK) {if (p == g->_left && c == p->_left) {RotateR(g);p->_col = BLACK;g->_col = RED;}else if (p == g->_right && c == p->_right) {RotateL(g);p->_col = BLACK;g->_col = RED;}else if (p == g->_left && c == p->_right) {RotateL(p);RotateR(g);c->_col = BLACK;g->_col = RED;}else if (p == g->_right && c == p->_left) {RotateR(p);RotateL(g);c->_col = BLACK;g->_col = RED;}else assert(false);break;}else if (u->_col == RED) {p->_col = BLACK;u->_col = BLACK;g->_col = RED;if (g == _root) {g->_col = BLACK;break;}else {c = g;p = c->_parent;g = p->_parent;}}else assert(false);}return make_pair(iterator(ret),true);}void RotateL(Node* parent) {Node* subR = parent->_right;Node* subRL = subR->_left;Node* ppnode = parent->_parent;if (subRL)subRL->_parent = parent;parent->_right = subRL;subR->_left = parent;parent->_parent = subR;if (parent == _root) {_root = subR;subR->_parent = nullptr;}else {subR->_parent = ppnode;if (ppnode->_left == parent)ppnode->_left = subR;else ppnode->_right = subR;}}void RotateR(Node* parent) {Node* subL = parent->_left;Node* subLR = subL->_right;Node* ppnode = parent->_parent;if (subLR)subLR->_parent = parent;parent->_left = subLR;subL->_right = parent;parent->_parent = subL;if (parent == _root) {_root = subL;subL->_parent = nullptr;}else {subL->_parent = ppnode;if (ppnode->_left == parent)ppnode->_left = subL;else ppnode->_right = subL;}}Node* getroot() {return _root;}private:Node* _root = nullptr;
};

MySet.h


namespace jxh {template<class T>class set {typedef RBTreeNode<T> Node;struct keyofvalue {const T& operator()(const T&key) {return key;}};void _inorder(Node* root) {if (root == nullptr)return;_inorder(root->_left);cout << root->_data << endl;_inorder(root->_right);}public:typedef typename RBTree<T, const T, keyofvalue>::iterator iterator;typedef typename RBTree<T, const T, keyofvalue>::const_iterator const_iterator;iterator begin(){return _t.begin();}iterator end(){return _t.end();}const_iterator begin()const{return _t.begin();}const_iterator end()const{return _t.end();}pair<iterator, bool> insert(const T& key){return _t.insert(key);}iterator find(const T& key){return _t.find(key);}void inorder() {_inorder(_t.getroot());}private:RBTree<T,const T,keyofvalue> _t;};

MyMap.h

namespace jxh {template<class K,class V>class map {typedef RBTreeNode<pair<K,V>> Node;struct keyofvalue {const K& operator()(const pair<K,V>& kv) {return kv.first;}};void _inorder(Node* root) {if (root == nullptr)return;_inorder(root->_left);cout << root->_data.first<<" "<<root->_data.second << endl;_inorder(root->_right);}public://typedef RBTreeIterator<pair<K,V>> iterator;typedef typename RBTree<K, pair<const K, V>, keyofvalue>::iterator iterator;typedef typename RBTree<K, pair<const K, V>, keyofvalue>::const_iterator const_iterator;const_iterator begin()const {return _t.begin();}const_iterator end() const{return _t.end();}iterator begin() {return _t.begin();}iterator end() {return _t.end();}pair<iterator, bool> insert(const pair<K, V>& kv){return _t.insert(kv);}iterator find(const K& key){return _t.find(key);}V& operator[](const K& key){pair<iterator, bool> ret = insert(make_pair(key, V()));return ret.first->second;}void inorder() {_inorder(_t.getroot());}private:RBTree<K, pair<const K,V>, keyofvalue> _t;};

这篇关于【C++】用红黑树封装map和set的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/889366

相关文章

C++使用栈实现括号匹配的代码详解

《C++使用栈实现括号匹配的代码详解》在编程中,括号匹配是一个常见问题,尤其是在处理数学表达式、编译器解析等任务时,栈是一种非常适合处理此类问题的数据结构,能够精确地管理括号的匹配问题,本文将通过C+... 目录引言问题描述代码讲解代码解析栈的状态表示测试总结引言在编程中,括号匹配是一个常见问题,尤其是在

使用C++实现链表元素的反转

《使用C++实现链表元素的反转》反转链表是链表操作中一个经典的问题,也是面试中常见的考题,本文将从思路到实现一步步地讲解如何实现链表的反转,帮助初学者理解这一操作,我们将使用C++代码演示具体实现,同... 目录问题定义思路分析代码实现带头节点的链表代码讲解其他实现方式时间和空间复杂度分析总结问题定义给定

C++初始化数组的几种常见方法(简单易懂)

《C++初始化数组的几种常见方法(简单易懂)》本文介绍了C++中数组的初始化方法,包括一维数组和二维数组的初始化,以及用new动态初始化数组,在C++11及以上版本中,还提供了使用std::array... 目录1、初始化一维数组1.1、使用列表初始化(推荐方式)1.2、初始化部分列表1.3、使用std::

C++ Primer 多维数组的使用

《C++Primer多维数组的使用》本文主要介绍了多维数组在C++语言中的定义、初始化、下标引用以及使用范围for语句处理多维数组的方法,具有一定的参考价值,感兴趣的可以了解一下... 目录多维数组多维数组的初始化多维数组的下标引用使用范围for语句处理多维数组指针和多维数组多维数组严格来说,C++语言没

c++中std::placeholders的使用方法

《c++中std::placeholders的使用方法》std::placeholders是C++标准库中的一个工具,用于在函数对象绑定时创建占位符,本文就来详细的介绍一下,具有一定的参考价值,感兴... 目录1. 基本概念2. 使用场景3. 示例示例 1:部分参数绑定示例 2:参数重排序4. 注意事项5.

使用C++将处理后的信号保存为PNG和TIFF格式

《使用C++将处理后的信号保存为PNG和TIFF格式》在信号处理领域,我们常常需要将处理结果以图像的形式保存下来,方便后续分析和展示,C++提供了多种库来处理图像数据,本文将介绍如何使用stb_ima... 目录1. PNG格式保存使用stb_imagephp_write库1.1 安装和包含库1.2 代码解

C++实现封装的顺序表的操作与实践

《C++实现封装的顺序表的操作与实践》在程序设计中,顺序表是一种常见的线性数据结构,通常用于存储具有固定顺序的元素,与链表不同,顺序表中的元素是连续存储的,因此访问速度较快,但插入和删除操作的效率可能... 目录一、顺序表的基本概念二、顺序表类的设计1. 顺序表类的成员变量2. 构造函数和析构函数三、顺序表

使用C++实现单链表的操作与实践

《使用C++实现单链表的操作与实践》在程序设计中,链表是一种常见的数据结构,特别是在动态数据管理、频繁插入和删除元素的场景中,链表相比于数组,具有更高的灵活性和高效性,尤其是在需要频繁修改数据结构的应... 目录一、单链表的基本概念二、单链表类的设计1. 节点的定义2. 链表的类定义三、单链表的操作实现四、

Go语言利用泛型封装常见的Map操作

《Go语言利用泛型封装常见的Map操作》Go语言在1.18版本中引入了泛型,这是Go语言发展的一个重要里程碑,它极大地增强了语言的表达能力和灵活性,本文将通过泛型实现封装常见的Map操作,感... 目录什么是泛型泛型解决了什么问题Go泛型基于泛型的常见Map操作代码合集总结什么是泛型泛型是一种编程范式,允

使用C/C++调用libcurl调试消息的方式

《使用C/C++调用libcurl调试消息的方式》在使用C/C++调用libcurl进行HTTP请求时,有时我们需要查看请求的/应答消息的内容(包括请求头和请求体)以方便调试,libcurl提供了多种... 目录1. libcurl 调试工具简介2. 输出请求消息使用 CURLOPT_VERBOSE使用 C