DataWhale集成学习【中】:(二)Bagging

2024-04-09 19:08

本文主要是介绍DataWhale集成学习【中】:(二)Bagging,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  • 这篇博文是 DataWhale集成学习【中】 的第二部分,主要是介绍Bagging
  • 参考资料为DataWhale开源项目:机器学习集成学习与模型融合(基于python)和scikit-learn官网
  • 学习交流欢迎联系 obito0401@163.com

文章目录

  • 原理
  • 案例

原理

  • 在DataWhale集成学习【中】:(一)投票法我们提到过:要想让整体模型取得更好的效果,应该增加模型之间的差异性。而增加模型之间的差异性的方法主要有两种:一是不同的数据,另一则是不同的方法
  • Bagging 方法的出发点就是不同的数据,其核心之处在于自助采样(bootstrap),即有放回的从数据集中进行采样
  • 基本流程:首先随机取出一个样本放入采样集合中,再把这个样本放回初始数据集,重复 K 次采样,则最终可以获得一个大小为 K 的样本集合。同样的方法,可以取出 T 个大小为 K 的样本集合,然后基于每个采样集合训练出一个基学习器,将这 T 个基学习器进行集成即可
  • 应用之处:Bagging 是一种降低方差的技术,因此在不剪枝决策树、神经网络等易受样本扰动的学习器上效果更加明显。在实际中,加入列采样的 Bagging 技术对高维小样本有很好的效果

案例

  • Python 的 sklearn 库中提供了 BaggingRegressorBaggingClassifier 两种 Bagging 方法
  • 下面的案例演示的是BaggingClassifier API的应用,基模型默认为树模型
# 导入函数库
from numpy import mean,std
from sklearn.datasets import make_classification
from sklearn.model_selection import cross_val_score,RepeatedStratifiedKFold
from sklearn.ensemble import BaggingClassifier# 加载数据集
X,y = make_classification(n_samples=1000,n_features=20,n_informative=15,n_redundant=5,random_state=911)
# 训练模型
model = BaggingClassifier()
# 评估模型
cv = RepeatedStratifiedKFold(n_splits=10,n_repeats=3,random_state=911)
n_scores = cross_val_score(model,X,y,scoring="accuracy",cv=cv,n_jobs=-1,error_score="raise")
print("Accuracy: %.3f,标准差为 %.3f"%(mean(n_scores),std(n_scores)))

在这里插入图片描述

这篇关于DataWhale集成学习【中】:(二)Bagging的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/888985

相关文章

Debezium 与 Apache Kafka 的集成方式步骤详解

《Debezium与ApacheKafka的集成方式步骤详解》本文详细介绍了如何将Debezium与ApacheKafka集成,包括集成概述、步骤、注意事项等,通过KafkaConnect,D... 目录一、集成概述二、集成步骤1. 准备 Kafka 环境2. 配置 Kafka Connect3. 安装 D

Spring AI集成DeepSeek的详细步骤

《SpringAI集成DeepSeek的详细步骤》DeepSeek作为一款卓越的国产AI模型,越来越多的公司考虑在自己的应用中集成,对于Java应用来说,我们可以借助SpringAI集成DeepSe... 目录DeepSeek 介绍Spring AI 是什么?1、环境准备2、构建项目2.1、pom依赖2.2

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

Java中Springboot集成Kafka实现消息发送和接收功能

《Java中Springboot集成Kafka实现消息发送和接收功能》Kafka是一个高吞吐量的分布式发布-订阅消息系统,主要用于处理大规模数据流,它由生产者、消费者、主题、分区和代理等组件构成,Ka... 目录一、Kafka 简介二、Kafka 功能三、POM依赖四、配置文件五、生产者六、消费者一、Kaf

SpringCloud集成AlloyDB的示例代码

《SpringCloud集成AlloyDB的示例代码》AlloyDB是GoogleCloud提供的一种高度可扩展、强性能的关系型数据库服务,它兼容PostgreSQL,并提供了更快的查询性能... 目录1.AlloyDBjavascript是什么?AlloyDB 的工作原理2.搭建测试环境3.代码工程1.

SpringBoot使用注解集成Redis缓存的示例代码

《SpringBoot使用注解集成Redis缓存的示例代码》:本文主要介绍在SpringBoot中使用注解集成Redis缓存的步骤,包括添加依赖、创建相关配置类、需要缓存数据的类(Tes... 目录一、创建 Caching 配置类二、创建需要缓存数据的类三、测试方法Spring Boot 熟悉后,集成一个外

Docker集成CI/CD的项目实践

《Docker集成CI/CD的项目实践》本文主要介绍了Docker集成CI/CD的项目实践,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录一、引言1.1 什么是 CI/CD?1.2 docker 在 CI/CD 中的作用二、Docke

SpringBoot集成SOL链的详细过程

《SpringBoot集成SOL链的详细过程》Solanaj是一个用于与Solana区块链交互的Java库,它为Java开发者提供了一套功能丰富的API,使得在Java环境中可以轻松构建与Solana... 目录一、什么是solanaj?二、Pom依赖三、主要类3.1 RpcClient3.2 Public

SpringBoot3集成swagger文档的使用方法

《SpringBoot3集成swagger文档的使用方法》本文介绍了Swagger的诞生背景、主要功能以及如何在SpringBoot3中集成Swagger文档,Swagger可以帮助自动生成API文档... 目录一、前言1. API 文档自动生成2. 交互式 API 测试3. API 设计和开发协作二、使用

SpringBoot如何集成Kaptcha验证码

《SpringBoot如何集成Kaptcha验证码》本文介绍了如何在Java开发中使用Kaptcha生成验证码的功能,包括在pom.xml中配置依赖、在系统公共配置类中添加配置、在控制器中添加生成验证... 目录SpringBoot集成Kaptcha验证码简介实现步骤1. 在 pom.XML 配置文件中2.