ffmpeg音频处理——pcm格式与resample(重采样)

2024-04-09 17:32

本文主要是介绍ffmpeg音频处理——pcm格式与resample(重采样),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1 基本概念1:获取pcm音频帧声道数

  1. AVCodecContext->channels
  2. avframe->channels
  3. printf("av_frame_get_channels = %d\n",av_frame_get_channels(frame));

1.1 声道与布局具有映射关系

audio channels and channel_layout_个叉叉_新浪博客

2 基本概念2:获取pcm音频帧每个声道的sample采样点个数

frame_->nb_samples

3 基本概念3:获取pcm音频帧物理存放方式

3.1 获取解码之后的pcm音频帧物理存放方式

frame->format

3.2 ffmpeg支持的音频帧的物理存放方式

FFmpeg: Audio sample formats

打印对应的含义
printf("av_get_sample_fmt_name= %s\n",av_get_sample_fmt_name(frame->format));

3.3 ffmpeg音频帧的物理存放方式含义

3.3.1 第一层意思: 每个采样点数据的物理存储类型
  1. 大端小端方式
  2. 无符号/有符号
  3. 数据位数
    8位,16位等
  4. 数据类型
    整形,浮点类型等
3.3.2 第二层意思: 不同声道的同一采样点是否单独存放
  1. 参考链接

    PCM数据格式 - taoanran - 开源中国社区
    Decode Audio from Memory - C++ - Stack Overflow
    audio - What is the difference between AV_SAMPLE_FMT_S16P and AV_SAMPLE_FMT_S16? - Stack Overflow

  2. 两种存放方式 packed和planar
    1. 第一种: 多个声道数据交错存放(packed类型,不带字符P)

      对于 packed音频(左右声道打包存放), 只有一个数据指针(相当于一个声道)。
      所有声道的数据交错排放在frame->data[0](即frame->extended_data[0])地址处
      所有声道的数据长度为linesize[0](单位:字节)

      地址数据备注
      data[0]声道1的采样点0每个采样点数据有int、uint、float,大端小端之分
      data[0]+1声道2的采样点0 
      data[0]+2声道1的采样点1 
      data[0]+3声道2的采样点1 
      data[0]+4声道1的采样点2 
      data[0]+5声道2的采样点2 
       
      data[0]+2i声道1的采样点i 
      data[0]+2i+1声道2的采样点i 

      比如: AV_SAMPLE_FMT_S16 所有声道的数据放在一个buffer中,左右声道采样点交叉存放,每个采样值为一个signed 16位(范围为-32767 to +32767)。

    2. 第二种: 每个声道数据单独存放(planar类型,带字符P)

      对于 planar音频(左右声道分开存放),每个声道有自己的数据存放位置。
      声道0的起始地址为 frame->data[0](或frame->extended_data[0])
      声道1的起始地址为 frame->data[1](或frame->extended_data[1])
      声道i的起始地址为 frame->data[i](或frame->extended_data[i])
      每个声道的数据长度为linesize[0](单位:字节)

      实际上ffmpeg在实现的时候,每个声道的数据连续存放,不同声道之间也是连续存放的。

      地址声道 
      data[0]声道1采样点1
        采样点2
        采样点i
      data[1]声道2采样点1
        采样点2
        采样点i

      所以 data[i]=data[i-1] + linesize[0]

      比如: AV_SAMPLE_FMT_S16P 每个声道的数据放在单独的buffer中,每个采样值为一个signed 16位(范围为-32767 to +32767)。

    3. 两者之间的联系
      1. 所有声道的数据都是存放在 frame->data[0]开始的一段连续空间中
      2. 如果是 packed类型,同一采样点的不同声道数据放到一起,然后存储下一个采样点
      3. 如果是 planar类型,同一声道的所有采样点数据放到一起,然后存放下一个声道
  3. 判断是否是 planar类型

    av_sample_fmt_is_planar(sample_fmt)

  4. 两者之间的转换
    1. 通过重采样函数进行转换
    2. 手动将每个声道的数据交错存放
  5. 根据存放方式,分配pcm数据空间(重采样用)
    1. 手动分配

      int nb_planes;
      static uint8_t **audio_dst_data = NULL;
      nb_planes = av_sample_fmt_is_planar(audio_dec_ctx->sample_fmt) ? audio_dec_ctx->channels : 1; //如果是 planar类型,需要分配一个指针数组,每个元素指向一个声道
      audio_dst_data = av_mallocz(sizeof(uint8_t *) * nb_planes);
      if (!audio_dst_data) {
      fprintf(stderr, "Could not allocate audio data buffers\n");
      ret = AVERROR(ENOMEM);
      goto end;
      }
      ret = av_samples_alloc(audio_dst_data, &audio_dst_linesize, av_frame_get_channels(frame),
      frame->nb_samples, frame->format, 1);
      if (ret < 0) {
      fprintf(stderr, "Could not allocate audio buffer\n");
      return AVERROR(ENOMEM);
      }

    2. 调用接口函数(内部实现,即是上面的函数调用过程)

      uint8_t ** audio_data;
      src_nb_channels = av_get_channel_layout_nb_channels(src_ch_layout);
      ret = av_samples_alloc_array_and_samples(&src_data, &src_linesize, src_nb_channels, //都是定义二重指针 audio_data,注意这里的调用方式
      src_nb_samples, src_sample_fmt, 0);
      if (ret < 0) {
      fprintf(stderr, "Could not allocate source samples\n");
      goto end;
      }
      // 这个函数内部即是上面的过程
      int av_samples_alloc_array_and_samples (uint8_t * audio_data,
      int * linesize,
      int nb_channels,
      int nb_samples,
      enum AVSampleFormat sample_fmt,
      int align
      )

3.3.3 获取pcm声道占有的byte空间大小
  1. 获取pcm每个声道占有的byte空间大小(可以通过pcm物理数据类型和采样点个数,通道个数推导出)
    1. 对于 packed音频(左右声道打包存放)

      AVFrame->int linesize[0]值即为打包存放的所有声道的数据字节长度

    2. 对于 planar音频(每个声道数据单独存放)

      AVFrame->int linesize[0]值即为每个声道的数据字节长度
      例如:
      frame->format为 FLTP类型(每个sample是float类型的)
      frame->nb_samples=2048(每个声道2048个采样点)
      推导出: 每个声道占有的byte空间大小为 2048*4=8192
      frame->linesize[0]确实等于8192

  2. 获取pcm所有声道占有的byte空间大小
    1. 对于 packed音频(左右声道打包存放)

      linesize[0]值即为所有声道的数据字节长度

    2. 对于 packed和planar音频,都可以使用官方函数得出

      输入的参数为pcm类型,声道个数,采样点数

      int av_samples_get_buffer_size  (   int *   linesize,  //主要针对 planar类型int   nb_channels,int   nb_samples,enum AVSampleFormat   sample_fmt,int   align )
      

      Parameters
      [out] linesize calculated linesize, may be NULL
      nb_channels the number of channels
      nb_samples the number of samples in a single channel
      sample_fmt the sample format
      align buffer size alignment (0 = default, 1 = no alignment)

      Returns
      required buffer size, or negative error code on failure

这篇关于ffmpeg音频处理——pcm格式与resample(重采样)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/888788

相关文章

Python Transformers库(NLP处理库)案例代码讲解

《PythonTransformers库(NLP处理库)案例代码讲解》本文介绍transformers库的全面讲解,包含基础知识、高级用法、案例代码及学习路径,内容经过组织,适合不同阶段的学习者,对... 目录一、基础知识1. Transformers 库简介2. 安装与环境配置3. 快速上手示例二、核心模

一文详解Java异常处理你都了解哪些知识

《一文详解Java异常处理你都了解哪些知识》:本文主要介绍Java异常处理的相关资料,包括异常的分类、捕获和处理异常的语法、常见的异常类型以及自定义异常的实现,文中通过代码介绍的非常详细,需要的朋... 目录前言一、什么是异常二、异常的分类2.1 受检异常2.2 非受检异常三、异常处理的语法3.1 try-

Python使用getopt处理命令行参数示例解析(最佳实践)

《Python使用getopt处理命令行参数示例解析(最佳实践)》getopt模块是Python标准库中一个简单但强大的命令行参数处理工具,它特别适合那些需要快速实现基本命令行参数解析的场景,或者需要... 目录为什么需要处理命令行参数?getopt模块基础实际应用示例与其他参数处理方式的比较常见问http

Java Response返回值的最佳处理方案

《JavaResponse返回值的最佳处理方案》在开发Web应用程序时,我们经常需要通过HTTP请求从服务器获取响应数据,这些数据可以是JSON、XML、甚至是文件,本篇文章将详细解析Java中处理... 目录摘要概述核心问题:关键技术点:源码解析示例 1:使用HttpURLConnection获取Resp

Java中Switch Case多个条件处理方法举例

《Java中SwitchCase多个条件处理方法举例》Java中switch语句用于根据变量值执行不同代码块,适用于多个条件的处理,:本文主要介绍Java中SwitchCase多个条件处理的相... 目录前言基本语法处理多个条件示例1:合并相同代码的多个case示例2:通过字符串合并多个case进阶用法使用

Java实现优雅日期处理的方案详解

《Java实现优雅日期处理的方案详解》在我们的日常工作中,需要经常处理各种格式,各种类似的的日期或者时间,下面我们就来看看如何使用java处理这样的日期问题吧,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言一、日期的坑1.1 日期格式化陷阱1.2 时区转换二、优雅方案的进阶之路2.1 线程安全重构2

HTML5表格语法格式详解

《HTML5表格语法格式详解》在HTML语法中,表格主要通过table、tr和td3个标签构成,本文通过实例代码讲解HTML5表格语法格式,感兴趣的朋友一起看看吧... 目录一、表格1.表格语法格式2.表格属性 3.例子二、不规则表格1.跨行2.跨列3.例子一、表格在html语法中,表格主要通过< tab

Python处理函数调用超时的四种方法

《Python处理函数调用超时的四种方法》在实际开发过程中,我们可能会遇到一些场景,需要对函数的执行时间进行限制,例如,当一个函数执行时间过长时,可能会导致程序卡顿、资源占用过高,因此,在某些情况下,... 目录前言func-timeout1. 安装 func-timeout2. 基本用法自定义进程subp

Java字符串处理全解析(String、StringBuilder与StringBuffer)

《Java字符串处理全解析(String、StringBuilder与StringBuffer)》:本文主要介绍Java字符串处理全解析(String、StringBuilder与StringBu... 目录Java字符串处理全解析:String、StringBuilder与StringBuffer一、St

浅析Java中如何优雅地处理null值

《浅析Java中如何优雅地处理null值》这篇文章主要为大家详细介绍了如何结合Lambda表达式和Optional,让Java更优雅地处理null值,感兴趣的小伙伴可以跟随小编一起学习一下... 目录场景 1:不为 null 则执行场景 2:不为 null 则返回,为 null 则返回特定值或抛出异常场景