Swift 异步序列 AsyncStream 新“玩法”以及内存泄漏、死循环那些事儿(上)

本文主要是介绍Swift 异步序列 AsyncStream 新“玩法”以及内存泄漏、死循环那些事儿(上),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述

概览

异步序列(Async Sequence)是 Swift 5.5 新并发模型中的一员“悍将”,系统标准库中很多类都做了重构以支持异步序列。我们还可以用 AsyncStream 辅助结构非常方便的创建自己的异步序列。

在这里插入图片描述

这里我们就来一起聊聊 AsyncStream 结构,以及它新增的 makeStream 构建器方法。

在本篇博文中,您将学到如下内容

  • 概览
  • 1. AsyncStream 旧构造器的弊端
  • 2. 拯救者:新方法 makeStream!
  • 总结

而在下篇中,我们将再接再厉继续讨论异步序列在使用时可能产生的内存泄漏、无限循环等等那些的潜伏陷阱。

相信学完本系列课程后,大家会对 Swift 新异步并发模型中异步序列的正确使用有更为深刻的领悟。

那还等什么呢?Let‘s find out!!!😉


1. AsyncStream 旧构造器的弊端

在 Swift 中创建自定义异步序列有很多种“姿势”,其中一个常见的方法是使用 AsyncStream 结构,可以认为它是一个异步序列的辅助构造器:

在这里插入图片描述

我们知道异步序列中的核心和精髓就是它的 Continuation 对象,做一个“二次元卡哇伊”的比喻:如果异步序列是一只大螃蟹,则 Continuation 就是它肥得流油的“蟹黄”:

在这里插入图片描述

值得注意的是,不像 Swift 中其它连续体(Continuation)对象,AsyncStream.Continuation 支持可逃逸(escaping)特性。这就让它的使用灵活性更上了一个层次。

我们使用 AsyncStream 创建异步序列主要有两种场景,一种是直接在其创建时就“包办”固定好所有元素的产出,但这样做缺乏变数、比较“死板”:

let stream = AsyncStream(unfolding: {return Int.random(in: 0..<Int.max)
})

另一种场景多半被用在 Apple 开发中的代理(Delegate)模式中,这种方式更加灵动自如:

protocol NumberSpawnerDelegate {func spawn(_ numbers: [Int])
}struct Spawner {let timer = Timer.publish(every: 1.0, on: .main, in: .common).autoconnect()var delegator: NumberSpawnerDelegate?var cancel: Cancellable?mutating func setup() {cancel = timer.sink { [self] _ invar numbers = [Int]()for _ in 0..<Int.random(in: 1...3) {numbers.append(Int.random(in: 0...10000))}self.delegator?.spawn(numbers)}}
}class AsyncNumberStream: NumberSpawnerDelegate {var continuation: AsyncStream<Int>.Continuation?lazy var stream: AsyncStream<Int> = {AsyncStream { continuation inself.continuation = continuation}}()func spawn(_ numbers: [Int]) {for i in numbers {continuation?.yield(i)}}
}

如上代码所示,我们的 AsyncNumberStream 异步序列遵从于 NumberSpawnerDelegate 协议,而 Spawner 作为驱动者自然就成为了 AsyncNumberStream 的事件源,它通过调用协议中的 spawn(😃 方法连接了发布者和接受者,使得天堑变通途。

我们可以这样使用 AsyncNumberStream 异步序列:

Task {let stream = AsyncNumberStream()var spawner = Spawner()spawner.delegator = streamspawner.setup()for await i in stream.stream {print("\(i)")}
}

运行结果如下所示:

在这里插入图片描述

不过这种以 AsyncStream 构造器“抓取”其 Continuation 对象的方式略显别扭(合肥话叫“肘手”)。而且 continuation 属性类型需要设置为可选值(AsyncStream<Int>.Continuation?),这多少让人觉得有些“不畅快”。

2. 拯救者:新方法 makeStream!

从 iOS 17.0 开始 Apple 为 AsyncStream 添加了一个新的 makeStream 方法专门用来解决上述窘境:

在这里插入图片描述

值得注意的是,虽然 makeStream 在 iOS 17 才被加入,但它向后兼容旧的系统(iOS 13 - iOS 17),所以在之前的 iOS 中也可以任性的使用它。

该方法返回一个由异步序列和其对应连续体组成的元组:

@available(macOS 10.15, iOS 13.0, watchOS 6.0, tvOS 13.0, *)@_backDeploy(before: macOS 14.0, iOS 17.0, watchOS 10.0, tvOS 17.0)public static func makeStream(of elementType: Element.Type = Element.self, bufferingPolicy limit: AsyncStream<Element>.Continuation.BufferingPolicy = .unbounded) -> (stream: AsyncStream<Element>, continuation: AsyncStream<Element>.Continuation)

这意味着之前“肘手”的调用可以改成这样:

class AsyncNumberStream: NumberSpawnerDelegate {let stream: AsyncStream<Int>private let continuation: AsyncStream<Int>.Continuationinit() {let (stream, continuation) = AsyncStream.makeStream(of: Int.self)self.stream = streamself.continuation = continuation}func spawn(_ numbers: [Int]) {for i in numbers {continuation.yield(i)}}
}

从上面代码可以看到,AsyncStream.makeStream 方法带来了如下一些改变:

  • Continuation 不再“嵌入”在 AsyncStream 构造器的回调闭包之中,它们现在处在同一个层级;
  • continuation 属性不再要求是可选类型了;
  • 整体实现更加简单、一目了然;

现在,我们对 AsyncStream.Continuation 的获取不再聱牙诘屈,同时也完美的消除了 continuation 属性可选类型的限制,正谓是一举两得、一石二鸟也!

当然,可能有的小伙伴们觉得 AsyncStream.makeStream 方法如下形式的调用更加 nice 一些:

init() {let result = AsyncStream.makeStream(of: UUID.self)locations = result.streamcontinuation = result.continuation
}

值得一提的是,尽管我们将 AsyncNumberStream 内部的逻辑“粉饰一新”,但外部接口并没有丝毫改变。所以,之前的调用无需做任何修改。

编译运行代码可以发现,一切都未曾改变,正所谓平平淡淡才是真!棒棒哒!

虽然新的 makeStream 方法让我们原有的实现“清风徐来,水波不兴”,但异步序列本身的使用仍然暗影重重、波诡云谲。康庄大道上还有很多陷阱等着算计我们,我们将在下篇博文中将它们一网打尽!

总结

在本篇博文中,我们讨论了 Swift 5.5 新并发模型中用 AsyncStream 结构创建异步序列的新方法,并比较了它和之前旧的实现有哪些进步。

在下篇博文中,我们将继续异步序列的填坑之旅,期待吧!

感谢观赏,再会!😎

这篇关于Swift 异步序列 AsyncStream 新“玩法”以及内存泄漏、死循环那些事儿(上)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/888706

相关文章

Java内存分配与JVM参数详解(推荐)

《Java内存分配与JVM参数详解(推荐)》本文详解JVM内存结构与参数调整,涵盖堆分代、元空间、GC选择及优化策略,帮助开发者提升性能、避免内存泄漏,本文给大家介绍Java内存分配与JVM参数详解,... 目录引言JVM内存结构JVM参数概述堆内存分配年轻代与老年代调整堆内存大小调整年轻代与老年代比例元空

C++高效内存池实现减少动态分配开销的解决方案

《C++高效内存池实现减少动态分配开销的解决方案》C++动态内存分配存在系统调用开销、碎片化和锁竞争等性能问题,内存池通过预分配、分块管理和缓存复用解决这些问题,下面就来了解一下... 目录一、C++内存分配的性能挑战二、内存池技术的核心原理三、主流内存池实现:TCMalloc与Jemalloc1. TCM

Redis过期删除机制与内存淘汰策略的解析指南

《Redis过期删除机制与内存淘汰策略的解析指南》在使用Redis构建缓存系统时,很多开发者只设置了EXPIRE但却忽略了背后Redis的过期删除机制与内存淘汰策略,下面小编就来和大家详细介绍一下... 目录1、简述2、Redis http://www.chinasem.cn的过期删除策略(Key Expir

Go语言中泄漏缓冲区的问题解决

《Go语言中泄漏缓冲区的问题解决》缓冲区是一种常见的数据结构,常被用于在不同的并发单元之间传递数据,然而,若缓冲区使用不当,就可能引发泄漏缓冲区问题,本文就来介绍一下问题的解决,感兴趣的可以了解一下... 目录引言泄漏缓冲区的基本概念代码示例:泄漏缓冲区的产生项目场景:Web 服务器中的请求缓冲场景描述代码

利用Python实现时间序列动量策略

《利用Python实现时间序列动量策略》时间序列动量策略作为量化交易领域中最为持久且被深入研究的策略类型之一,其核心理念相对简明:对于显示上升趋势的资产建立多头头寸,对于呈现下降趋势的资产建立空头头寸... 目录引言传统策略面临的风险管理挑战波动率调整机制:实现风险标准化策略实施的技术细节波动率调整的战略价

Java内存区域与内存溢出异常的详细探讨

《Java内存区域与内存溢出异常的详细探讨》:本文主要介绍Java内存区域与内存溢出异常的相关资料,分析异常原因并提供解决策略,如参数调整、代码优化等,帮助开发者排查内存问题,需要的朋友可以参考下... 目录一、引言二、Java 运行时数据区域(一)程序计数器(二)Java 虚拟机栈(三)本地方法栈(四)J

java变量内存中存储的使用方式

《java变量内存中存储的使用方式》:本文主要介绍java变量内存中存储的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、介绍2、变量的定义3、 变量的类型4、 变量的作用域5、 内存中的存储方式总结1、介绍在 Java 中,变量是用于存储程序中数据

PostgreSQL 序列(Sequence) 与 Oracle 序列对比差异分析

《PostgreSQL序列(Sequence)与Oracle序列对比差异分析》PostgreSQL和Oracle都提供了序列(Sequence)功能,但在实现细节和使用方式上存在一些重要差异,... 目录PostgreSQL 序列(Sequence) 与 oracle 序列对比一 基本语法对比1.1 创建序

Python 异步编程 asyncio简介及基本用法

《Python异步编程asyncio简介及基本用法》asyncio是Python的一个库,用于编写并发代码,使用协程、任务和Futures来处理I/O密集型和高延迟操作,本文给大家介绍Python... 目录1、asyncio是什么IO密集型任务特征2、怎么用1、基本用法2、关键字 async1、async

嵌入式Linux驱动中的异步通知机制详解

《嵌入式Linux驱动中的异步通知机制详解》:本文主要介绍嵌入式Linux驱动中的异步通知机制,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录前言一、异步通知的核心概念1. 什么是异步通知2. 异步通知的关键组件二、异步通知的实现原理三、代码示例分析1. 设备结构