tensorflow.js 如何使用opencv.js通过面部特征点估算脸部姿态并绘制示意图

本文主要是介绍tensorflow.js 如何使用opencv.js通过面部特征点估算脸部姿态并绘制示意图,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 前言
  • 一、实现步骤
    • 1. 获取所需特征点的索引
    • 2. 使用opencv.js 计算俯仰角、水平角和翻滚角
      • cv.solvePnP介绍
      • cv.solvePnP原理
      • 运行代码查看效果
    • 3.绘制姿态示意直线
      • 添加canvas元素
      • 计算姿态直线坐标并绘制
  • 总结


前言

在计算机视觉领域,估算脸部姿态是一项具有挑战性但又极具应用前景的任务。通过识别脸部特征点,我们可以了解人脸的姿态,包括旋转角度、倾斜程度等信息。本文将介绍如何利用 TensorFlow.js 和 OpenCV.js 结合起来,实现通过面部特征点估算脸部姿态并绘制示意图的功能。


一、实现步骤

本文将基于文章如何使用tensorflow.js实现面部特征点检测中实现的人脸特征点检测继续根据人脸特征点实现人脸姿态的估计和绘制。

1. 获取所需特征点的索引

我们可以从示例项目看到注释的主要特征点索引如下:
请添加图片描述

2. 使用opencv.js 计算俯仰角、水平角和翻滚角

我们可以从示例项目看到计算的相关代码如下:

 var modelPoints = window.cv.matFromArray(6, 3, window.cv.CV_32F, [0.0,0.0,0.0, // Nose tip0.0,-330.0,-65.0, // Chin-225.0,170.0,-135.0, // Left eye left corner225.0,170.0,-135.0, // Right eye right corne-150.0,-150.0,-125.0, // Left Mouth corner150.0,-150.0,-125.0, // Right mouth corner]);var imagePoints = window.cv.matFromArray(6, 2, window.cv.CV_32F, [keyPoints[4].x,keyPoints[4].y, // Nose tipkeyPoints[152].x,keyPoints[152].y, // ChinkeyPoints[263].x,keyPoints[263].y, // Left eye left cornerkeyPoints[33].x,keyPoints[33].y, // Right eye right cornekeyPoints[308].x,keyPoints[308].y, // Left Mouth cornerkeyPoints[78].x,keyPoints[78].y, // Right mouth corner]);var focal_length = inputResolution.width;var center = [inputResolution.width / 2, inputResolution.height / 2];var cameraMatrix = window.cv.matFromArray(3, 3, window.cv.CV_64F, [focal_length,0,center[0],0,focal_length,center[1],0,0,1,]);// console.log("Camera Matrix", cameraMatrix.data64F);var distCoeffs = window.cv.matFromArray(4,1,window.cv.CV_64F,[0, 0, 0, 0]); // Assuming no lens distortionvar rvec = new window.cv.Mat(3, 1, window.cv.CV_64F);var tvec = new window.cv.Mat(3, 1, window.cv.CV_64F);let ret_val = window.cv.solvePnP(modelPoints,imagePoints,cameraMatrix,distCoeffs,rvec,tvec,false,window.cv.SOLVEPNP_ITERATIVE // flags);// console.log("-------ret_val--------");// console.log(ret_val);// console.log("-------rvecs--------");// console.log("rvecs.data64F", rvec.data64F);// console.log("tvecs.data64F", tvec.data64F);var rtn = getEulerAngle(rvec);var pitch = rtn[0]; // 俯仰角var yaw = rtn[1]; // 水平角var roll = rtn[2]; // 翻滚角// console.log("pitch:", pitch, "yaw:", yaw, "roll:", roll);

cv.solvePnP介绍

在计算机视觉领域,解决摄像头姿态估计(Camera Pose Estimation)问题是一项关键任务。摄像头姿态估计可以用于许多应用,例如增强现实、目标跟踪和三维重建等。OpenCV是一个广泛使用的开源计算机视觉库,其中的cv.solvePnP方法是用于解决摄像头姿态估计问题的重要工具。

cv.solvePnP方法是OpenCV库中的一个函数,用于估计摄像头的姿态。该方法可以通过已知的物体三维坐标和对应的图像中的二维坐标来计算摄像头的姿态。姿态包括摄像头的旋转和平移。

cv.solvePnP原理

cv.solvePnP方法的原理基于解决一种称为PnP问题(Perspective-n-Point Problem)的几何计算。该问题旨在通过已知的三维点和它们在图像中的投影来计算摄像头的姿态。具体来说,该方法利用了摄像头的投影模型和三维-二维点对之间的几何关系。

在解决PnP问题时,cv.solvePnP方法通常使用一种称为迭代最小化重投影误差(Iterative Minimization of Reprojection Error)的技术。该技术通过最小化实际观测到的图像点和由估计的摄像头姿态计算得到的投影点之间的误差来优化姿态估计。

cv.solvePnP方法在许多计算机视觉应用中都有广泛的应用,其中包括但不限于:
增强现实(AR):用于将虚拟对象准确地叠加到实际世界中。
目标跟踪:用于追踪目标物体的位置和姿态。
三维重建:用于从多个视角的图像中重建三维场景。

运行代码查看效果

npm i安装依赖
npm start运行代码
请添加图片描述

3.绘制姿态示意直线

添加canvas元素

请添加图片描述

计算姿态直线坐标并绘制

相关代码内容如下:

var noseEndPoint2D = new window.cv.Mat(1, 2, window.cv.CV_64F);var jacobian = new window.cv.Mat(imagePoints.rows * 2,13,window.cv.CV_64F);window.cv.projectPoints(window.cv.matFromArray(1, 3, window.cv.CV_64F, [0.0, 0.0, 1000.0]),rvec,tvec,cameraMatrix,distCoeffs,noseEndPoint2D,jacobian);// console.log(noseEndPoint2D);// 绘制线段,连接鼻尖和其它点var p1 = new window.cv.Point(Math.round(imagePoints.data32F[0]),Math.round(imagePoints.data32F[1]));var p2 = new window.cv.Point(Math.round(noseEndPoint2D.data64F[0]),Math.round(noseEndPoint2D.data64F[1]));var zeroMat = window.cv.Mat.zeros(inputResolution.height,inputResolution.width,window.cv.CV_8U);// console.log("p1", p1.x, p1.y);// console.log("p2", p2.x, p2.y);window.cv.line(zeroMat, p1, p2, new window.cv.Scalar(255, 0, 0), 2);window.cv.imshow("cv", zeroMat);

最终的效果如下
请添加图片描述


总结

感谢您看到这里,本文介绍了如何结合tensorflow.js 和 opencv.js通过面部特征点估算脸部姿态并绘制示意图,希望对您有所帮助,如果文章中存在任何问题、疏漏,或者您对文章有任何建议,请在评论区提出。


这篇关于tensorflow.js 如何使用opencv.js通过面部特征点估算脸部姿态并绘制示意图的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/887575

相关文章

详解Vue如何使用xlsx库导出Excel文件

《详解Vue如何使用xlsx库导出Excel文件》第三方库xlsx提供了强大的功能来处理Excel文件,它可以简化导出Excel文件这个过程,本文将为大家详细介绍一下它的具体使用,需要的小伙伴可以了解... 目录1. 安装依赖2. 创建vue组件3. 解释代码在Vue.js项目中导出Excel文件,使用第三

Linux alias的三种使用场景方式

《Linuxalias的三种使用场景方式》文章介绍了Linux中`alias`命令的三种使用场景:临时别名、用户级别别名和系统级别别名,临时别名仅在当前终端有效,用户级别别名在当前用户下所有终端有效... 目录linux alias三种使用场景一次性适用于当前用户全局生效,所有用户都可调用删除总结Linux

java图像识别工具类(ImageRecognitionUtils)使用实例详解

《java图像识别工具类(ImageRecognitionUtils)使用实例详解》:本文主要介绍如何在Java中使用OpenCV进行图像识别,包括图像加载、预处理、分类、人脸检测和特征提取等步骤... 目录前言1. 图像识别的背景与作用2. 设计目标3. 项目依赖4. 设计与实现 ImageRecogni

python管理工具之conda安装部署及使用详解

《python管理工具之conda安装部署及使用详解》这篇文章详细介绍了如何安装和使用conda来管理Python环境,它涵盖了从安装部署、镜像源配置到具体的conda使用方法,包括创建、激活、安装包... 目录pytpshheraerUhon管理工具:conda部署+使用一、安装部署1、 下载2、 安装3

Mysql虚拟列的使用场景

《Mysql虚拟列的使用场景》MySQL虚拟列是一种在查询时动态生成的特殊列,它不占用存储空间,可以提高查询效率和数据处理便利性,本文给大家介绍Mysql虚拟列的相关知识,感兴趣的朋友一起看看吧... 目录1. 介绍mysql虚拟列1.1 定义和作用1.2 虚拟列与普通列的区别2. MySQL虚拟列的类型2

使用MongoDB进行数据存储的操作流程

《使用MongoDB进行数据存储的操作流程》在现代应用开发中,数据存储是一个至关重要的部分,随着数据量的增大和复杂性的增加,传统的关系型数据库有时难以应对高并发和大数据量的处理需求,MongoDB作为... 目录什么是MongoDB?MongoDB的优势使用MongoDB进行数据存储1. 安装MongoDB

关于@MapperScan和@ComponentScan的使用问题

《关于@MapperScan和@ComponentScan的使用问题》文章介绍了在使用`@MapperScan`和`@ComponentScan`时可能会遇到的包扫描冲突问题,并提供了解决方法,同时,... 目录@MapperScan和@ComponentScan的使用问题报错如下原因解决办法课外拓展总结@

mysql数据库分区的使用

《mysql数据库分区的使用》MySQL分区技术通过将大表分割成多个较小片段,提高查询性能、管理效率和数据存储效率,本文就来介绍一下mysql数据库分区的使用,感兴趣的可以了解一下... 目录【一】分区的基本概念【1】物理存储与逻辑分割【2】查询性能提升【3】数据管理与维护【4】扩展性与并行处理【二】分区的

使用Python实现在Word中添加或删除超链接

《使用Python实现在Word中添加或删除超链接》在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能,本文将为大家介绍一下Python如何实现在Word中添加或... 在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能。通过添加超

Linux使用fdisk进行磁盘的相关操作

《Linux使用fdisk进行磁盘的相关操作》fdisk命令是Linux中用于管理磁盘分区的强大文本实用程序,这篇文章主要为大家详细介绍了如何使用fdisk进行磁盘的相关操作,需要的可以了解下... 目录简介基本语法示例用法列出所有分区查看指定磁盘的区分管理指定的磁盘进入交互式模式创建一个新的分区删除一个存