本文主要是介绍FunDA(1)- Query Result Row:强类型Query结果行,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
FunDA的特点之一是以数据流方式提供逐行数据操作支持。这项功能解决了FRM如Slick数据操作以SQL批次模式为主所产生的问题。为了实现安全高效的数据行操作,我们必须把FRM产生的Query结果集转变成一种强类型的结果集,也就是可以字段名称进行操作的数据行类型结果集。在前面的一篇讨论中我们介绍了通过Shape来改变Slick Query结果行类型。不过这样的转变方式需要编程人员对Slick有较深的了解。更重要的是这种方式太依赖Slick的内部功能了。我们希望FunDA可以支持多种FRM,所以应当尽量避免与任何FRM的紧密耦合。看来从FRM的返回结果开始进行数据行类型格式转换是一种比较现实的选择。一般来说我们还是可以假定任何FRM的使用者对于FRM的Query结果集类型是能理解的,因为他们的主要目的就是为了使用这个结果集。那么由FunDA的使用者提供一个Query结果数据行与另一种类型的类型转换函数应该不算是什么太高的要求吧。FunDA的设计思路是由用户提供一个目标类型以及FRM Query结果数据行到这个强类型行类型的类型转换函数后由FunDA提供强类型行结果集。下面先看一个典型的Slick Query例子:
import slick.driver.H2Driver.api._
import scala.concurrent.duration._
import scala.concurrent.Awaitobject TypedRow extends App {class AlbumsTable(tag: Tag) extends Table[(Long,String,String,Option[Int],Int)](tag,"ALBUMS") {def id = column[Long]("ID",O.PrimaryKey)def title = column[String]("TITLE")def artist = column[String]("ARTIST")def year = column[Option[Int]]("YEAR")def company = column[Int]("COMPANY")def * = (id,title,artist,year,company)}val albums = TableQuery[AlbumsTable]class CompanyTable(tag: Tag) extends Table[(Int,String)](tag,"COMPANY") {def id = column[Int]("ID",O.PrimaryKey)def name = column[String]("NAME")def * = (id, name)}val companies = TableQuery[CompanyTable]val albumInfo = for {a <- albumsc <- companiesif (a.company === c.id)} yield(a.title,a.artist,a.year,c.name)val db = Database.forConfig("h2db")Await.result(db.run(albumInfo.result),Duration.Inf).foreach {r =>println(s"${r._1} by ${r._2}, ${r._3.getOrElse(2000)} ${r._4}")}}
前面提到:如果用户能提供一个返回行类型和一个转换函数如下:
case class AlbumRow(title: String,artist: String,year: Int,studio: String)def toTypedRow(raw: (String,String,Option[Int],String)):AlbumRow =AlbumRow(raw._1,raw._2,raw._3.getOrElse(2000),raw._4)
我们可以在读取数据后用这个函数来转换行类型:
Await.result(db.run(albumInfo.result),Duration.Inf).map{raw =>toTypedRow(raw)}.foreach {r =>println(s"${r.title} by ${r.artist}, ${r.year} ${r.studio}")}
返回行类型AlbumRow是个强类型。现在我吗可以用字段名来选择数据字段值了。不过,还是有些地方不对劲:应该是用户提供了目标行类型和转换函数后,直接调用一个函数就可以得到需要的结果集了。是的,我们就是要设计一套后台工具库来提供这个函数。
下面我们要设计FunDA的数据行类型class FDADataRow。这个类型现在基本上完全是针对Slick而设的,成功完成功能实现后期再考虑松散耦合问题。这个类型需要一个目标行类型定义和一个类型转换函数,外加一些Slick profile, database等信息。然后提供一个目标行类型结果集函数getTypedRows:
package com.bayakala.funda.rowtypesimport scala.concurrent.duration._
import scala.concurrent.Await
import slick.driver.JdbcProfileobject DataRowType {class FDADataRow[SOURCE, TARGET](slickProfile: JdbcProfile,convert: SOURCE => TARGET){import slickProfile.api._def getTypedRows(slickAction: DBIO[Iterable[SOURCE]])(slickDB: Database): Iterable[TARGET] =Await.result(slickDB.run(slickAction), Duration.Inf).map(raw => convert(raw))}object FDADataRow {def apply[SOURCE, TARGET](slickProfile: JdbcProfile, converter: SOURCE => TARGET): FDADataRow[SOURCE, TARGET] =new FDADataRow[SOURCE, TARGET](slickProfile, converter)}}
import com.bayakala.funda.rowtypes.DataRowTypeval loader = FDADataRow(slick.driver.H2Driver, toTypedRow _)loader.getTypedRows(albumInfo.result)(db).foreach {r =>println(s"${r.title} by ${r.artist}, ${r.year} ${r.studio}")}
def updateYear(from: AlbumRow): AlbumRow =AlbumRow(from.title,from.artist,from.year+1,from.studio)loader.getTypedRows(albumInfo.result)(db).map(updateYear).foreach {r =>println(s"${r.title} by ${r.artist}, ${r.year} ${r.studio}")}
下面是这篇讨论中的源代码:
FunDA函数库:
package com.bayakala.funda.rowtypesimport scala.concurrent.duration._
import scala.concurrent.Await
import slick.driver.JdbcProfileobject DataRowType {class FDADataRow[SOURCE, TARGET](slickProfile: JdbcProfile,convert: SOURCE => TARGET){import slickProfile.api._def getTypedRows(slickAction: DBIO[Iterable[SOURCE]])(slickDB: Database): Iterable[TARGET] =Await.result(slickDB.run(slickAction), Duration.Inf).map(raw => convert(raw))}object FDADataRow {def apply[SOURCE, TARGET](slickProfile: JdbcProfile, converter: SOURCE => TARGET): FDADataRow[SOURCE, TARGET] =new FDADataRow[SOURCE, TARGET](slickProfile, converter)}}
import slick.driver.H2Driver.api._import scala.concurrent.duration._
import scala.concurrent.Awaitobject TypedRow extends App {class AlbumsTable(tag: Tag) extends Table[(Long,String,String,Option[Int],Int)](tag,"ALBUMS") {def id = column[Long]("ID",O.PrimaryKey)def title = column[String]("TITLE")def artist = column[String]("ARTIST")def year = column[Option[Int]]("YEAR")def company = column[Int]("COMPANY")def * = (id,title,artist,year,company)}val albums = TableQuery[AlbumsTable]class CompanyTable(tag: Tag) extends Table[(Int,String)](tag,"COMPANY") {def id = column[Int]("ID",O.PrimaryKey)def name = column[String]("NAME")def * = (id, name)}val companies = TableQuery[CompanyTable]val albumInfo =for {a <- albumsc <- companiesif (a.company === c.id)} yield(a.title,a.artist,a.year,c.name)val db = Database.forConfig("h2db")Await.result(db.run(albumInfo.result),Duration.Inf).foreach {r =>println(s"${r._1} by ${r._2}, ${r._3.getOrElse(2000)} ${r._4}")}case class AlbumRow(title: String,artist: String,year: Int,studio: String)def toTypedRow(raw: (String,String,Option[Int],String)):AlbumRow =AlbumRow(raw._1,raw._2,raw._3.getOrElse(2000),raw._4)Await.result(db.run(albumInfo.result),Duration.Inf).map{raw =>toTypedRow(raw)}.foreach {r =>println(s"${r.title} by ${r.artist}, ${r.year} ${r.studio}")}import com.bayakala.funda.rowtypes.DataRowType.FDADataRowval loader = FDADataRow(slick.driver.H2Driver, toTypedRow _)loader.getTypedRows(albumInfo.result)(db).foreach {r =>println(s"${r.title} by ${r.artist}, ${r.year} ${r.studio}")}def updateYear(from: AlbumRow): AlbumRow =AlbumRow(from.title,from.artist,from.year+1,from.studio)loader.getTypedRows(albumInfo.result)(db).map(updateYear).foreach {r =>println(s"${r.title} by ${r.artist}, ${r.year} ${r.studio}")}}
这篇关于FunDA(1)- Query Result Row:强类型Query结果行的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!