[leetcode] sudoku solver:暴力还是优化

2024-04-09 01:08

本文主要是介绍[leetcode] sudoku solver:暴力还是优化,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. backtracking

Sudoku是典型的backtracking问题,有关backtracking的问题《The Algorithm Design Manual》 7.1章解释的最详细易懂。Backtracking的定义如下:

Backtracking is a systemic way to iterate through all the possible configurations of a search space.

简而言之,backtracking就是通过遍历所有组合,并从中找出符合条件的结果集的一种方法。因此,一种非常直观的backtracking算法可以描述如下:

// array: 保存了[0, step-1]每一步的选择
// step: 当前是第几步backtracking(array, step)
{// 判断前step步的选择是否可以构成一个结果if (is_a_solution(array, step)) {process_solution(array, step);} else {step++;// 获取下一步的所有选择condidates = construct_candidates(array, step);foreach c in condidates {// 对每一种选择,继续递归下去array[step] = c;make_move(array, step);backtracking(array, step);unmake_move(array, step);}}
}

其中重要函数有这样几个:

  • is_a_solution:判断当前组合是否是一个期望的结果
  • process_solution:处理结果,例如打印出来
  • construct_candidates:获取下一步的所有选择。注意,这里并没有说明如何选择下一步该如何进行,大多数情况下,这个函数还应当有选择下一步的功能
  • make_move:向前进一步。通常这意味着在array中填充这一步的所选择的的值
  • unmake_move:向后退一步。通常这意味着在array中将这一步的值清空

对于数独问题,套用上面的算法,大概步骤如下:

#define DIMENSION 3;
bool solve(vector<vector<char> > &board, int step) {// 1. is_a_solutionif (step == DIMENSION*DIMENSION*9) return true;// 2. get next square and its all candidatesint row = 0, col = 0;   // position to move next, start from 0;set<char> possible_values;get_next_square(board, row, col, possible_values, step);for (set<char>::iterator it = possible_values.begin(); it != possible_values.end(); ++it) {board[row][col] = *it;				// make_moveif (solve(board, step+1)) return true;board[row][col] = EMPTY;			// unmake_move}return false;
}

2. 如何选择下一步

backtracking主要有两种应用:

  • 获取所有组合。典型问题:
    • Letter Combinations of a Phone Number:给出电话号码,求电话号码对应的所有字符串
    • Generate Parentheses:求所有n对括号"()"组成的字符串
    • Combination Sum:给定一组数字和一个target值,求所有和等于target的组合(组合中每个数字可以出现多次)
    • Combination Sum2:和Combination Sum问题一样,区别是组合中每个数字只能出现一次
    • Permutations:求一组数字的全排列
    • Permutations2:和Permutations问题一样,区别是给定的一组数字有重复,并且要求结果集中不能有重复的组合
  • 从所有的组合中找出符合条件的结果集。典型问题:
    • Sudoku Solver:数独解

第一类问题需要遍历所有解,有些特殊的情况无非是结果集中需要去重,这些都可以通过精细地选择”下一步的值“来做到。例如,在每一步中,可以对”这一步可选的值“做排序,相同的值只选一次,这样可以解决绝大多数”结果集去重“问题(例如Combination Sum2和Permutations2)

第二类问题与第一类问题有着根本不同。第二类问题可以在遍历一组组合的过程中,如果发现当前的组合已经不可能满足条件,则无需遍历完,即可在中途丢提当前的组合,直接跳到下一种组合。

考虑数独问题,首先,如果我们在构造一个组合的过程中,发现某个格子填入任何值都不可能满足条件,那么当前的组合无需再计算下去,必然是之前某些步出错。无需再计算当前还没有填充的其他格子的值,直接丢弃当前解,跳到上一步尝试其他值即可。

说道这里,其实还有一个最关键的问题没有细说,那就是如何选择下一步?

例如sudoku问题,最直观的做法是随机选择一个还是空白的格子,还能再优化吗?考虑这样的情况:假设当前空白的格子中,有一个格子有5种可能的值,有一个格子只有1个可能的值,那么应当先选择哪个格子?显然,选择只有1个可能值的格子更好。填充了这个格子,能够减少其他未填充格子的可选择值,也就降低了unmake_move的次数。

但是这样一定比随机选择更快吗?细心的读者能够发现,这样的选择方式,在每次选择下一步的时候,会花费相当的时间去查找”可选择值最少“的空白格子。每一步,我们对所有空白格子,计算它们的可选择值;计算可选择值的过程是查看当前行、当前列、当前9格。其实,这和随机选择一样,最后都会得到时间代价O(n^4)的算法。

3. 更多的优化

其实这里还有继续优化的空间,这里不详细展开,只说一下大概的思路。
  • 使用数组保留每个空白格子的可选值。每当有空白格被填入了数字,重新计算受影响的空白格的可选值(当前行、当前列、当前9格)
  • 不那么严格的选择。例如,我们可以只计算每个9格中的空白格的数量,从空白格最少的9格中,随机选出一个空白格,作为下一步要填充的格子。这是一种不那么严格的选择,好处是每个9格的空白格数量可以快速地计算出,同时保证了unmake_move的次数比随机选择要大大减少。

4. 暴力破解 VS 精细选择

每一步随机选择一个空白格,这其实就是一种暴力破解的方法,这里还有另一种暴力破解的方法,经过计算就会发现,其实两者的算法复杂度基本相当。前文提到的精细选择,如果精细选择的过程没有优化,算法的复杂度其实没有变化,有兴趣的同学可以自己证明和验证。



这篇关于[leetcode] sudoku solver:暴力还是优化的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/886831

相关文章

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

一文详解SpringBoot响应压缩功能的配置与优化

《一文详解SpringBoot响应压缩功能的配置与优化》SpringBoot的响应压缩功能基于智能协商机制,需同时满足很多条件,本文主要为大家详细介绍了SpringBoot响应压缩功能的配置与优化,需... 目录一、核心工作机制1.1 自动协商触发条件1.2 压缩处理流程二、配置方案详解2.1 基础YAML

MySQL中慢SQL优化的不同方式介绍

《MySQL中慢SQL优化的不同方式介绍》慢SQL的优化,主要从两个方面考虑,SQL语句本身的优化,以及数据库设计的优化,下面小编就来给大家介绍一下有哪些方式可以优化慢SQL吧... 目录避免不必要的列分页优化索引优化JOIN 的优化排序优化UNION 优化慢 SQL 的优化,主要从两个方面考虑,SQL 语

MySQL中慢SQL优化方法的完整指南

《MySQL中慢SQL优化方法的完整指南》当数据库响应时间超过500ms时,系统将面临三大灾难链式反应,所以本文将为大家介绍一下MySQL中慢SQL优化的常用方法,有需要的小伙伴可以了解下... 目录一、慢SQL的致命影响二、精准定位问题SQL1. 启用慢查询日志2. 诊断黄金三件套三、六大核心优化方案方案

Redis中高并发读写性能的深度解析与优化

《Redis中高并发读写性能的深度解析与优化》Redis作为一款高性能的内存数据库,广泛应用于缓存、消息队列、实时统计等场景,本文将深入探讨Redis的读写并发能力,感兴趣的小伙伴可以了解下... 目录引言一、Redis 并发能力概述1.1 Redis 的读写性能1.2 影响 Redis 并发能力的因素二、

使用国内镜像源优化pip install下载的方法步骤

《使用国内镜像源优化pipinstall下载的方法步骤》在Python开发中,pip是一个不可或缺的工具,用于安装和管理Python包,然而,由于默认的PyPI服务器位于国外,国内用户在安装依赖时可... 目录引言1. 为什么需要国内镜像源?2. 常用的国内镜像源3. 临时使用国内镜像源4. 永久配置国内镜

C#原型模式之如何通过克隆对象来优化创建过程

《C#原型模式之如何通过克隆对象来优化创建过程》原型模式是一种创建型设计模式,通过克隆现有对象来创建新对象,避免重复的创建成本和复杂的初始化过程,它适用于对象创建过程复杂、需要大量相似对象或避免重复初... 目录什么是原型模式?原型模式的工作原理C#中如何实现原型模式?1. 定义原型接口2. 实现原型接口3

Java嵌套for循环优化方案分享

《Java嵌套for循环优化方案分享》介绍了Java中嵌套for循环的优化方法,包括减少循环次数、合并循环、使用更高效的数据结构、并行处理、预处理和缓存、算法优化、尽量减少对象创建以及本地变量优化,通... 目录Java 嵌套 for 循环优化方案1. 减少循环次数2. 合并循环3. 使用更高效的数据结构4

Deepseek使用指南与提问优化策略方式

《Deepseek使用指南与提问优化策略方式》本文介绍了DeepSeek语义搜索引擎的核心功能、集成方法及优化提问策略,通过自然语言处理和机器学习提供精准搜索结果,适用于智能客服、知识库检索等领域... 目录序言1. DeepSeek 概述2. DeepSeek 的集成与使用2.1 DeepSeek API

Tomcat高效部署与性能优化方式

《Tomcat高效部署与性能优化方式》本文介绍了如何高效部署Tomcat并进行性能优化,以确保Web应用的稳定运行和高效响应,高效部署包括环境准备、安装Tomcat、配置Tomcat、部署应用和启动T... 目录Tomcat高效部署与性能优化一、引言二、Tomcat高效部署三、Tomcat性能优化总结Tom