2024年妈妈杯数学建模MathorCup数学建模思路B题思路解析+参考成品

2024-04-08 10:20

本文主要是介绍2024年妈妈杯数学建模MathorCup数学建模思路B题思路解析+参考成品,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1 赛题思路

(赛题出来以后第一时间在群内分享,点击下方群名片即可加群)

2 比赛日期和时间
报名截止时间:2024年4月11日(周四)12:00

比赛开始时间:2024年4月12日(周五)8:00

比赛结束时间:2024年4月16日(周二)9:00

3 组织机构
主办单位:中国优选法统筹法与经济数学研究会

中国优选法统筹法与经济数学研究会是在中国科学技术协会直接领导下的学术性社会团体,是国家一级学会。学会由华罗庚教授于1981年发起成立,至今成立了评价方法与应用、项目管理、计算机模拟、统筹、管理决策与信息系统、工业工程、高等教育管理、数学教育、经济数学与管理数学、应急管理、灰色系统研究,复杂系统研究等十余个专业分会。竞赛是由中国优选法统筹法与经济数学研究会主办,MathorCup高校数学建模挑战赛组委会具体负责竞赛的组织。

4 建模常见问题类型


趁现在赛题还没更新,给大家汇总一下建模经常使用到的数学模型,题目八九不离十基本属于一下四种问题

4.1 分类问题

神经网络分类:

BP 神经网络是一种神经网络学习算法。其由输入层、中间层、输出层组成的阶层型神经网络,中间层可扩展为多层。RBF(径向基)神经网络:径向基函数(RBF-Radial Basis Function)神经网络是具有单隐层的三层前馈网络。它模拟了人脑中局部调整、相互覆盖接收域的神经网络结构。感知器神经网络:是一个具有单层计算神经元的神经网络,网络的传递函数是线性阈值单元。主要用来模拟人脑的感知特征。线性神经网络:是比较简单的一种神经网络,由一个或者多个线性神经元构成。采用线性函数作为传递函数,所以输出可以是任意值。自组织神经网络:自组织神经网络包括自组织竞争网络、自组织特征映射网络、学习向量量化等网络结构形式。K近邻算法: K最近邻分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一。

import numpy as np# 定义神经网络类
class NeuralNetwork:def __init__(self):# 随机初始化权重np.random.seed(1)self.weights = 2 * np.random.random((3, 1)) - 1# Sigmoid激活函数def sigmoid(self, x):return 1 / (1 + np.exp(-x))# Sigmoid的导数def sigmoid_derivative(self, x):return x * (1 - x)# 训练神经网络def train(self, inputs, outputs, iterations):for iteration in range(iterations):# 正向传播output = self.predict(inputs)# 计算误差error = outputs - output# 反向传播adjustment = np.dot(inputs.T, error * self.sigmoid_derivative(output))# 更新权重self.weights += adjustment# 预测def predict(self, inputs):return self.sigmoid(np.dot(inputs, self.weights))# 训练数据集
training_inputs = np.array([[0, 0, 1],[1, 1, 1],[1, 0, 1],[0, 1, 1]])training_outputs = np.array([[0, 1, 1, 0]]).T# 初始化神经网络
neural_network = NeuralNetwork()print("随机初始化的权重:")
print(neural_network.weights)# 训练神经网络
neural_network.train(training_inputs, training_outputs, 10000)print("训练后的权重:")
print(neural_network.weights)# 测试新数据
print("新数据预测结果:")
print(neural_network.predict(np.array([1, 0, 0])))

4.2 优化问题

研究线性约束条件下线性目标函数的极值问题的数学理论和方法。英文缩写LP。它是运筹学的一个重要分支,广泛应用于军事作战、经济分析、经营管理和工程技术等方面。建模方法:列出约束条件及目标函数;画出约束条件所表示的可行域;在可行域内求目标函数的最优解及最优值。

非线性规划:

非线性规划是具有非线性约束条件或目标函数的数学规划,是运筹学的一个重要分支。非线性规划研究一个 n元实函数在一组等式或不等式的约束条件下的极值问题,且 目标函数和约束条件至少有一个是未知量的非线性函数。目标函数和约束条件都是 线性函数的情形则属于线性规划。

整数规划:

规划中的变量(全部或部分)限制为整数,称为整数规划。若在线性模型中,变量限制为整数,则称为整数线性规划。目前所流行的求解整数规划的方法往往只适用于整数线性规划。一类要求问题的解中的全部或一部分变量为整数的数学规划。从约束条件的构成又可细分为线性,二次和非线性的整数规划。

from pulp import *# 创建整数规划问题
prob = LpProblem("Integer_Problem", LpMaximize)# 定义决策变量
x1 = LpVariable("x1", lowBound=0, cat='Integer')
x2 = LpVariable("x2", lowBound=0, cat='Integer')# 定义目标函数
prob += 3*x1 + 2*x2, "Objective_Function"# 添加约束条件
prob += 2*x1 + x2 <= 10
prob += x1 + 3*x2 <= 12# 解决问题
prob.solve()# 输出结果
print("Status:", LpStatus[prob.status])
print("Optimal values:")
for v in prob.variables():print(v.name, "=", v.varValue)
print("Optimal value of the objective function:", value(prob.objective))

4.3 预测问题

灰色预测

灰色预测是就灰色系统所做的预测。是一种对含有不确定因素的系统进行预测的方法。灰色预测通过鉴别系统因素之间发展趋势的相异程度,即进行关联分析,并对原始数据进行生成处理来寻找系统变动的规律,生成有较强规律性的数据序列,然后建立相应的微分方程模型,从而预测事物未来发展趋势的状况。其用等时距观测到的反映预测对象特征的一系列数量值构造灰色预测模型,预测未来某一时刻的特征量,或达到某一特征量的时间。

import numpy as np# 灰色预测模型
def grey_prediction(data):n = len(data)# 累加生成序列accumulation = np.cumsum(data)# 计算累加生成序列的一次紧邻均值生成序列avg_accumulation = 0.5 * (accumulation[:-1] + accumulation[1:])# 建立累加生成序列的一次紧邻均值生成序列与原始数据的关系x0 = data[0]B = np.vstack((-avg_accumulation, np.ones(n-1))).TYn = data[1:]# 求解参数a, u = np.dot(np.linalg.inv(np.dot(B.T, B)), np.dot(B.T, Yn))# 模型检验Pn = (x0 - u/a) * np.exp(-a * np.arange(1, n + 1)) + u/a# 预测predict = np.hstack((x0, np.diff(Pn).cumsum()))return predict# 示例数据
data = np.array([120, 130, 125, 135, 140, 145])# 灰色预测
prediction = grey_prediction(data)# 输出预测结果
print("原始数据:", data)
print("灰色预测结果:", prediction)

4.4 评价问题

主成分分析法(降维)

是一种统计方法。通过正交变换将一组可能存在相关性的变量转换为一组线性不相关的变量,转换后的这组变量叫主成分。在用统计分析方法研究多变量的课题时,变量个数太多就会增加课题的复杂性。人们自然希望变量个数较少而得到的信息较多。在很多情形,变量之间是有一定的相关关系的,当两个变量之间有一定相关关系时,可以解释为这两个变量反映此课题的信息有一定的重叠。主成分分析是对于原先提出的所有变量,将重复的变量(关系紧密的变量)删去多余,建立尽可能少的新变量,使得这些新变量是两两不相关的,而且这些新变量在反映课题的信息方面尽可能保持原有的信息。设法将原来变量重新组合成一组新的互相无关的几个综合变量,同时根据实际需要从中可以取出几个较少的综合变量尽可能多地反映原来变量的信息的统计方法叫做主成分分析或称主分量分析,也是数学上用来降维的一种方法。

import numpy as np
from sklearn.decomposition import PCA# 示例数据
data = np.array([[1, 2, 3],[4, 5, 6],[7, 8, 9],[10, 11, 12]])# 创建 PCA 模型,指定主成分数量
pca = PCA(n_components=2)# 拟合数据并进行主成分分析
pca.fit(data)# 转换数据到主成分空间
transformed_data = pca.transform(data)# 主成分
components = pca.components_# 方差解释比
explained_variance_ratio = pca.explained_variance_ratio_# 输出结果
print("原始数据:")
print(data)
print("\n主成分:")
print(components)
print("\n转换后的数据:")
print(transformed_data)
print("\n方差解释比:")
print(explained_variance_ratio)

5 建模资料 

六、获取方式

思路及参考成品将在下方名片群文件中更新。

这篇关于2024年妈妈杯数学建模MathorCup数学建模思路B题思路解析+参考成品的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/885311

相关文章

linux进程D状态的解决思路分享

《linux进程D状态的解决思路分享》在Linux系统中,进程在内核模式下等待I/O完成时会进入不间断睡眠状态(D状态),这种状态下,进程无法通过普通方式被杀死,本文通过实验模拟了这种状态,并分析了如... 目录1. 问题描述2. 问题分析3. 实验模拟3.1 使用losetup创建一个卷作为pv的磁盘3.

C语言中自动与强制转换全解析

《C语言中自动与强制转换全解析》在编写C程序时,类型转换是确保数据正确性和一致性的关键环节,无论是隐式转换还是显式转换,都各有特点和应用场景,本文将详细探讨C语言中的类型转换机制,帮助您更好地理解并在... 目录类型转换的重要性自动类型转换(隐式转换)强制类型转换(显式转换)常见错误与注意事项总结与建议类型

MySQL 缓存机制与架构解析(最新推荐)

《MySQL缓存机制与架构解析(最新推荐)》本文详细介绍了MySQL的缓存机制和整体架构,包括一级缓存(InnoDBBufferPool)和二级缓存(QueryCache),文章还探讨了SQL... 目录一、mysql缓存机制概述二、MySQL整体架构三、SQL查询执行全流程四、MySQL 8.0为何移除查

在Rust中要用Struct和Enum组织数据的原因解析

《在Rust中要用Struct和Enum组织数据的原因解析》在Rust中,Struct和Enum是组织数据的核心工具,Struct用于将相关字段封装为单一实体,便于管理和扩展,Enum用于明确定义所有... 目录为什么在Rust中要用Struct和Enum组织数据?一、使用struct组织数据:将相关字段绑

使用Java实现一个解析CURL脚本小工具

《使用Java实现一个解析CURL脚本小工具》文章介绍了如何使用Java实现一个解析CURL脚本的工具,该工具可以将CURL脚本中的Header解析为KVMap结构,获取URL路径、请求类型,解析UR... 目录使用示例实现原理具体实现CurlParserUtilCurlEntityICurlHandler

深入解析Spring TransactionTemplate 高级用法(示例代码)

《深入解析SpringTransactionTemplate高级用法(示例代码)》TransactionTemplate是Spring框架中一个强大的工具,它允许开发者以编程方式控制事务,通过... 目录1. TransactionTemplate 的核心概念2. 核心接口和类3. TransactionT

数据库使用之union、union all、各种join的用法区别解析

《数据库使用之union、unionall、各种join的用法区别解析》:本文主要介绍SQL中的Union和UnionAll的区别,包括去重与否以及使用时的注意事项,还详细解释了Join关键字,... 目录一、Union 和Union All1、区别:2、注意点:3、具体举例二、Join关键字的区别&php

Spring IOC控制反转的实现解析

《SpringIOC控制反转的实现解析》:本文主要介绍SpringIOC控制反转的实现,IOC是Spring的核心思想之一,它通过将对象的创建、依赖注入和生命周期管理交给容器来实现解耦,使开发者... 目录1. IOC的基本概念1.1 什么是IOC1.2 IOC与DI的关系2. IOC的设计目标3. IOC

java中的HashSet与 == 和 equals的区别示例解析

《java中的HashSet与==和equals的区别示例解析》HashSet是Java中基于哈希表实现的集合类,特点包括:元素唯一、无序和可包含null,本文给大家介绍java中的HashSe... 目录什么是HashSetHashSet 的主要特点是HashSet 的常用方法hasSet存储为啥是无序的

Linux中shell解析脚本的通配符、元字符、转义符说明

《Linux中shell解析脚本的通配符、元字符、转义符说明》:本文主要介绍shell通配符、元字符、转义符以及shell解析脚本的过程,通配符用于路径扩展,元字符用于多命令分割,转义符用于将特殊... 目录一、linux shell通配符(wildcard)二、shell元字符(特殊字符 Meta)三、s