LLamaFactory:当下最容易上手的大模型微调工具

2024-04-08 04:44

本文主要是介绍LLamaFactory:当下最容易上手的大模型微调工具,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

近日,国内的一款微调框架发布了自己的论文《LLAMAFACTORY: Unified Efficient Fine-Tuning of 100+ Language Models》,对他们的框架做了系统性的总结。该框架自推出后迅速出圈,现已斩获15.6k的star,逐步成为当下微调的首选工具。

喜欢本文记得收藏、点赞、关注。文末参与技术讨论

在这里插入图片描述

https://arxiv.org/pdf/2403.13372.pdf

大模型实战

节前,我们星球组织了一场算法岗技术&面试讨论会,邀请了一些互联网大厂朋友、参加社招和校招面试的同学,针对算法岗技术趋势、大模型落地项目经验分享、新手如何入门算法岗、该如何准备、面试常考点分享等热门话题进行了深入的讨论。


汇总合集:《大模型实战宝典》(2024版) 发布!


突出表现

模型微调相较于上下文学习来讲,存在比较高的门槛,但又是模型专业化,领域化不可或缺的技术手段。而其复杂性突出表现在这些方面:

1)理论基础,如果说基于大模型写prompt 根据一定范式来构建RAG或者Agent不需要太多机器学习理论知识,然而微调就必须要对这些有理解,比如样本,学习率,logloss等。

2)数据准备,对于普通开发者,高质量的数据是微调成功的关键保证,而如何预处理,清洗,标注这些样本本身就很复杂,更因此诞生了大模型数据工程这样的领域来解决这一问题。

3)基座模型存在分化,虽然当下很多模型都参考llama和huggingface的一些规范,但是仍然都有一些特殊之处,想要微调也需要针对性地去分析和构建相应的策略。

4)超参数优化,微调本身是一个“炼丹”过程,如何能够找到合适的超参数,达到一个最佳性能,是一个重大挑战。

5)AI工程复杂性,涉及到硬件\软件\复杂流程的协同配合以及系统优化,在有限的成本、资源和时间要求下完成模型训练过程。

正是因为这些原因,对于预训练微调,需要一个类似于工厂的工业化手段来降低门槛,提升效率。

因此,行业内出现了很多微调框架,而LLamaFactory(https://github.com/hiyouga/LLaMA-Factory)便是其中之一,从起名上就可以看出它们的目标是成为模型微调的工厂。

在这里插入图片描述

架构

它得以流行主要得益于支持当下主流的大模型百川、千问、LLaMA等,不仅集成了大模型预训练、监督微调和强化微调等阶段的主流的微调技术(支持 LoRA 和 QLoRA 等参数高效微调策略),还提供了预训练、指令微调等丰富的数据集,方便参考使用,最重要的是提供了一个无代码的图形界面,大幅降低使用门槛,非开发者也可以方便地完成模型微调。

该框架架构上由四个模块构成:模型加载器、数据工作器和训练器,以及用户界面LlamaBoard。

在这里插入图片描述

在根据官方文档安装好LLamaFactory后,可以有三种方式进行操作,WebUI、CLI或者Python。

1.webUI。

CUDA_VISIBLE_DEVICES=0 python src/train_web.py

在这里插入图片描述

2.CLI,由于有时候界面限制,可能需要命令行的方式进行微调。如果不知道具体格式,可以在界面上配置好,再复制到命令行中调整使用。

在这里插入图片描述

在example目录中有大量的示例可供参考。

examples/
├── lora_single_gpu/
│   ├── pretrain.sh: 进行预训练
│   ├── sft.sh: 进行指令监督微调
│   ├── reward.sh: 进行奖励模型训练
│   ├── ppo.sh: 进行 PPO 训练
│   ├── dpo.sh: 进行 DPO 训练
│   ├── orpo.sh: 进行 ORPO 训练
│   ├── prepare.sh: 保存预处理后的数据集
│   └── predict.sh: 进行批量预测
├── qlora_single_gpu/
│   ├── bitsandbytes.sh: 微调 4/8 比特 BNB 模型
│   ├── gptq.sh: 微调 4/8 比特 GPTQ 模型
│   ├── awq.sh: 微调 4 比特 AWQ 模型
│   └── aqlm.sh: 微调 2 比特 AQLM 模型
├── lora_multi_gpu/
│   ├── single_node.sh: 使用 Accelerate 进行单节点训练
│   └── multi_node.sh: 使用 Accelerate 进行多节点训练
├── full_multi_gpu/
│   ├── single_node.sh: 使用 DeepSpeed 进行单节点训练
│   └── multi_node.sh: 使用 DeepSpeed 进行多节点训练
├── merge_lora/
│   ├── merge.sh: 将 LoRA 权重合并到预训练模型中
│   └── quantize.sh: 使用 AutoGPTQ 量化模型
├── inference/
│   ├── cli_demo.sh: 启动命令行推理接口
│   ├── api_demo.sh: 启动 OpenAI 风格 API
│   ├── web_demo.sh: 启动浏览器推理接口
│   └── evaluate.sh: 在 MMLU 数据集上评测模型
└── extras/├── galore/│   └── sft.sh: 使用 GaLore 训练模型├── loraplus/│   └── sft.sh: 使用 LoRA+ 训练模型├── llama_pro/│   ├── expand.sh: 扩展模型中的层│   └── sft.sh: 训练扩展后的模型└── fsdp_qlora/└── sft.sh: 使用 FSDP 微调量化模型

3)编程方式。

from llmtuner import run_exp
run_exp(dict(stage="sft",do_train=True,model_name_or_path="Qwen/Qwen1.5-0.5B-Chat",dataset="identity,alpaca_gpt4_en,alpaca_gpt4_zh",template="qwen",finetuning_type="lora",lora_target="all",output_dir="test_identity",per_device_train_batch_size=4,gradient_accumulation_steps=4,lr_scheduler_type="cosine",logging_steps=10,save_steps=100,learning_rate=1e-4,num_train_epochs=5.0,max_samples=500,max_grad_norm=1.0,fp16=True,
))

对于用户来讲,准备正确高质量的数据是用好该工具的关键。在使用自定义数据集时需要在 dataset_info.json 文件中按照以下格式提供数据集定义,数据集格式支持两种:alpaca 和 sharegpt,具体可参考其官方文档。

"数据集名称": {"hf_hub_url": "Hugging Face 的数据集仓库地址(若指定,则忽略 script_url 和 file_name)","ms_hub_url": "ModelScope 的数据集仓库地址(若指定,则忽略 script_url 和 file_name)","script_url": "包含数据加载脚本的本地文件夹名称(若指定,则忽略 file_name)","file_name": "该目录下数据集文件的名称(若上述参数未指定,则此项必需)","file_sha1": "数据集文件的 SHA-1 哈希值(可选,留空不影响训练)","subset": "数据集子集的名称(可选,默认:None)","folder": "Hugging Face 仓库的文件夹名称(可选,默认:None)","ranking": "是否为偏好数据集(可选,默认:False)","formatting": "数据集格式(可选,默认:alpaca,可以为 alpaca 或 sharegpt)","columns(可选)": {"prompt": "数据集代表提示词的表头名称(默认:instruction)","query": "数据集代表请求的表头名称(默认:input)","response": "数据集代表回答的表头名称(默认:output)","history": "数据集代表历史对话的表头名称(默认:None)","messages": "数据集代表消息列表的表头名称(默认:conversations)","system": "数据集代表系统提示的表头名称(默认:None)","tools": "数据集代表工具描述的表头名称(默认:None)"},"tags(可选,用于 sharegpt 格式)": {"role_tag": "消息中代表发送者身份的键名(默认:from)","content_tag": "消息中代表文本内容的键名(默认:value)","user_tag": "消息中代表用户的 role_tag(默认:human)","assistant_tag": "消息中代表助手的 role_tag(默认:gpt)","observation_tag": "消息中代表工具返回结果的 role_tag(默认:observation)","function_tag": "消息中代表工具调用的 role_tag(默认:function_call)","system_tag": "消息中代表系统提示的 role_tag(默认:system,会覆盖 system 列)"}
}

经过以上的步骤,剩下的就是需要耐心的调参和评估了。下面是一个利用webui进行微调操作示例。

小结

相较于其他方法,目前,LlamaFactory可以说是当下最简单快捷又功能强大的一种微调工具,值得大家学习使用。

技术交流群

前沿技术资讯、算法交流、求职内推、算法竞赛、面试交流(校招、社招、实习)等、与 10000+来自港科大、北大、清华、中科院、CMU、腾讯、百度等名校名企开发者互动交流~

我们建了NLP&大模型算法岗技术与面试交流群, 想要获取最新面试题、了解最新面试动态的、需要源码&资料、提升技术的同学,可以直接加微信号:mlc2040。加的时候备注一下:研究方向 +学校/公司+CSDN,即可。然后就可以拉你进群了。

方式①、微信搜索公众号:机器学习社区,后台回复:加群
方式②、添加微信号:mlc2040,备注:技术交流

用通俗易懂方式讲解系列

  • 《大模型面试宝典》(2024版) 正式发布!

  • 《大模型实战宝典》(2024版)正式发布!

  • 用通俗易懂的方式讲解:自然语言处理初学者指南(附1000页的PPT讲解)

  • 用通俗易懂的方式讲解:1.6万字全面掌握 BERT

  • 用通俗易懂的方式讲解:NLP 这样学习才是正确路线

  • 用通俗易懂的方式讲解:28张图全解深度学习知识!

  • 用通俗易懂的方式讲解:不用再找了,这就是 NLP 方向最全面试题库

  • 用通俗易懂的方式讲解:实体关系抽取入门教程

  • 用通俗易懂的方式讲解:灵魂 20 问帮你彻底搞定Transformer

  • 用通俗易懂的方式讲解:图解 Transformer 架构

  • 用通俗易懂的方式讲解:大模型算法面经指南(附答案)

  • 用通俗易懂的方式讲解:十分钟部署清华 ChatGLM-6B,实测效果超预期

  • 用通俗易懂的方式讲解:内容讲解+代码案例,轻松掌握大模型应用框架 LangChain

  • 用通俗易懂的方式讲解:如何用大语言模型构建一个知识问答系统

  • 用通俗易懂的方式讲解:最全的大模型 RAG 技术概览

  • 用通俗易懂的方式讲解:利用 LangChain 和 Neo4j 向量索引,构建一个RAG应用程序

  • 用通俗易懂的方式讲解:使用 Neo4j 和 LangChain 集成非结构化知识图增强 QA

  • 用通俗易懂的方式讲解:面了 5 家知名企业的NLP算法岗(大模型方向),被考倒了。。。。。

  • 用通俗易懂的方式讲解:NLP 算法实习岗,对我后续找工作太重要了!。

  • 用通俗易懂的方式讲解:理想汽车大模型算法工程师面试,被问的瑟瑟发抖。。。。

  • 用通俗易懂的方式讲解:基于 Langchain-Chatchat,我搭建了一个本地知识库问答系统

  • 用通俗易懂的方式讲解:面试字节大模型算法岗(实习)

  • 用通俗易懂的方式讲解:大模型算法岗(含实习)最走心的总结

  • 用通俗易懂的方式讲解:大模型微调方法汇总

这篇关于LLamaFactory:当下最容易上手的大模型微调工具的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/884598

相关文章

Python pyinstaller实现图形化打包工具

《Pythonpyinstaller实现图形化打包工具》:本文主要介绍一个使用PythonPYQT5制作的关于pyinstaller打包工具,代替传统的cmd黑窗口模式打包页面,实现更快捷方便的... 目录1.简介2.运行效果3.相关源码1.简介一个使用python PYQT5制作的关于pyinstall

Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)

《Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)》:本文主要介绍Python基于火山引擎豆包大模型搭建QQ机器人详细的相关资料,包括开通模型、配置APIKEY鉴权和SD... 目录豆包大模型概述开通模型付费安装 SDK 环境配置 API KEY 鉴权Ark 模型接口Prompt

使用Python制作一个PDF批量加密工具

《使用Python制作一个PDF批量加密工具》PDF批量加密‌是一种保护PDF文件安全性的方法,通过为多个PDF文件设置相同的密码,防止未经授权的用户访问这些文件,下面我们来看看如何使用Python制... 目录1.简介2.运行效果3.相关源码1.简介一个python写的PDF批量加密工具。PDF批量加密

使用Java编写一个文件批量重命名工具

《使用Java编写一个文件批量重命名工具》这篇文章主要为大家详细介绍了如何使用Java编写一个文件批量重命名工具,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录背景处理1. 文件夹检查与遍历2. 批量重命名3. 输出配置代码片段完整代码背景在开发移动应用时,UI设计通常会提供不

Python按条件批量删除TXT文件行工具

《Python按条件批量删除TXT文件行工具》这篇文章主要为大家详细介绍了Python如何实现按条件批量删除TXT文件中行的工具,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1.简介2.运行效果3.相关源码1.简介一个由python编写android的可根据TXT文件按条件批

详解Python中通用工具类与异常处理

《详解Python中通用工具类与异常处理》在Python开发中,编写可重用的工具类和通用的异常处理机制是提高代码质量和开发效率的关键,本文将介绍如何将特定的异常类改写为更通用的ValidationEx... 目录1. 通用异常类:ValidationException2. 通用工具类:Utils3. 示例文

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

高效录音转文字:2024年四大工具精选!

在快节奏的工作生活中,能够快速将录音转换成文字是一项非常实用的能力。特别是在需要记录会议纪要、讲座内容或者是采访素材的时候,一款优秀的在线录音转文字工具能派上大用场。以下推荐几个好用的录音转文字工具! 365在线转文字 直达链接:https://www.pdf365.cn/ 365在线转文字是一款提供在线录音转文字服务的工具,它以其高效、便捷的特点受到用户的青睐。用户无需下载安装任何软件,只

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了