【编译原理】手工打造语法分析器

2024-04-08 01:52

本文主要是介绍【编译原理】手工打造语法分析器,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

重点:

  • 语法分析的原理
  • 递归下降算法(Recursive Descent Parsing)
  • 上下文无关文法(Context-free Grammar,CFG)

关键点:

  • 左递归问题
  • 深度遍历求值 - 后续遍历

上一篇「词法分析器」将字符串拆分为了一个一个的 token。
本篇我们将 token 变成语法树。

一、递归下降算法

还是这个例子 int age = 45
我们给出这个语法的规则:

intDeclaration : Int Identifier ('=' additiveExpression)?;

如果翻译为程序的话,伪代码如下

// 伪代码
MatchIntDeclare(){MatchToken(Int);        // 匹配 Int 关键字MatchIdentifier();       // 匹配标识符MatchToken(equal);       // 匹配等号MatchExpression();       // 匹配表达式
}

输出的 AST 类似于:

Programm CalculatorIntDeclaration ageAssignmentExp =IntLiteral 45

上面的过程,称为「递归下降算法」。
从顶部开始不断向下生成节点,其中还会有递归调用的部分。

二、上下文无关文法

上面的例子比较简单,还可以用正则表达式文法来表示。
但如果是个算数表达式呢?正则文法就很难表示了。

  • 2+3*5
  • 2*3+5
  • 2*3

这时我们可以用递归的规则来表示

additiveExpression:   multiplicativeExpression|   additiveExpression Plus multiplicativeExpression;multiplicativeExpression:   IntLiteral|   multiplicativeExpression Star IntLiteral;

生成的 AST 为:
image.png

如果要计算表达式的值,只需要对根节点求值就可以了。
这个就叫做**「上下文无关文法」**。

但你把上述规则翻译为代码逻辑时,会发现一个问题,无限递归
我们先用个最简单的示例:

	additiveExpression:   IntLiteral|   additiveExpression Plus IntLiteral;

比如输入 2+3

  • 先判断其是不是 IntLiteral,发现不是
  • 然后匹配 additiveExpression Plus IntLiteral,此时还没有消耗任何的 token
  • 先进入的是 additiveExpression,此时要处理的表达式还是 2+3
  • 又回到开始,无限循环

这里要注意的一个问题:
并不是觉得 2+3 符合 additiveExpression Plus IntLiteral 就能直接按照 + 拆分为两部分,然后两部分分别去匹配。
这里是顺序匹配的,直到匹配到该语法规则的结束符为止。
additiveExpression Plus IntLiteraladditiveExpression 的部分,也是在处理完整的 token 的(2+3)。

三、左递归解决方案

改为右递归

如何处理这个左递归问题呢?
我们可以把表达式换个位置:

	additiveExpression:   IntLiteral|   IntLiteral Plus additiveExpression;

先匹配 IntLiteral 这样就能消耗掉一个 token,就不会无限循环了。
比如还是 2+3

  • 2+3 不是 IntLiteral,跳到下面
  • 2+3 的第一个字符是 2IntLiteral 消耗掉,并结束 IntLiteral 匹配
  • 然后 +Plus 消耗掉
  • 最后 3 进入 additiveExpression,匹配为第一条规则 IntLiteral

这样就结束了,没有无限循环。
改写成算法是:

private SimpleASTNode additive(TokenReader tokens) throws Exception {SimpleASTNode child1 = IntLiteral();  // 计算第一个子节点SimpleASTNode node = child1;  // 如果没有第二个子节点,就返回这个Token token = tokens.peek();if (child1 != null && token != null) {if (token.getType() == TokenType.Plus) {token = tokens.read();SimpleASTNode child2 = additive(); // 递归地解析第二个节点if (child2 != null) {node = new SimpleASTNode(ASTNodeType.AdditiveExp, token.getText());node.addChild(child1);node.addChild(child2);} else {throw new Exception("invalid additive expression, expecting the right part.");}}}return node;
}

但也有问题:
比如 2+3+4,你会发现它的计算顺序变为了 2+(3+4) 后面 3+4 作为一个 additiveExpression 先被计算,然后才会和前面的 2 相加。改变了计算顺序。
image.png

消除左递归

上面右递归解决了无限递归的问题,但是又有了结合优先级的问题。
那么我们再改写一下左递归:

additiveExpression:   IntLiteral additiveExpression';additiveExpression':		'+' IntLiteral additiveExpression'| 	ε;

文法中,ε(读作 epsilon)是空集的意思。
语法树 AST 就变成了下图左边的样子,虽然没有无限递归,但是按照前面思路,使用递归下降算法,结合性还是不对。
我们期望的应该是右边的 AST 树样子。那么怎么才能变成右边的样子呢?
image.png

这里我们插入一个知识点:
前面语法规则的表示方式成为:「巴科斯范式」,简称 BNF
我们把下面用正则表达式简化表达的方式,称为「扩展巴科斯范式 (EBNF)」
add -> mul (+ mul)*

那么我们把上面的表达式改写成 EBNF 形式,变为:

additiveExpression -> IntLiteral ('+' IntLiteral)*

这里写法的变化,就能让我们的算法逻辑产生巨大的变化。

重点:
前面左递归也好、右递归也好,变来变去都是递归调用,导致无限循环、结合性的问题。如果我们干掉递归,用循环来代替,就能按照我们期待的方式来执行了。
这里的区别是:前面递归计算过程是后序,把最后访问到的节点先计算,然后再一步步的返回;而循环迭代是前序,先计算再往后访问。

我们再写出计算逻辑:

private SimpleASTNode additive(TokenReader tokens) throws Exception {SimpleASTNode child1 = IntLiteral(tokens);  // 应用 add 规则SimpleASTNode node = child1;if (child1 != null) {while (true) {                              // 循环应用 add'Token token = tokens.peek();if (token != null && (token.getType() == TokenType.Plus)) {token = tokens.read();              // 读出加号SimpleASTNode child2 = IntLiteral(tokens);  // 计算下级节点node = new SimpleASTNode(ASTNodeType.Additive, token.getText());node.addChild(child1);              // 注意,新节点在顶层,保证正确的结合性node.addChild(child2);child1 = node;} else {break;}}}return node;
}

消除了递归,只有循环迭代。你可以和上面递归的代码对比下。

再提一个概念:「尾递归」
尾递归就是函数的最后一句是递归的调用自身,可以理解为先序。而这种尾递归通常都可以转化为一个循环语句。

四、执行代码

前面我们已经把一个语句转换为了一个 AST 树,接下来我们遍历这个语法树,就能实现计算求值了。
2+3+4 为例,简化后的语法树长这样:
image.png

遍历的伪代码如下:

evaluate(node) {if node.type == TYPE.ADD:left_res = evaluate(node.getChild(0))right_res = evaluate(node.getChild(1))return left_res + right_reselse if node.type == TYPE.INT:return node.val
}

五、小结

✌️至此,我们实现了一个计算器。

  • 可以实现词法分析:对输入的文本拆分为一个一个的 token
  • 生成语法树:将 token 变为一个 AST 树
  • 计算求值:遍历 AST 树,就能得到最终的计算结果

后面你可以在此基础上进行扩展,增加更多的运算符。以及扩充为一个脚本语言解释器,添加变量赋值、计算等等操作咯。

这篇关于【编译原理】手工打造语法分析器的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/884262

相关文章

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制

用Java打造简易计算器的实现步骤

《用Java打造简易计算器的实现步骤》:本文主要介绍如何设计和实现一个简单的Java命令行计算器程序,该程序能够执行基本的数学运算(加、减、乘、除),文中通过代码介绍的非常详细,需要的朋友可以参考... 目录目标:一、项目概述与功能规划二、代码实现步骤三、测试与优化四、总结与收获总结目标:简单计算器,设计

Redis主从复制的原理分析

《Redis主从复制的原理分析》Redis主从复制通过将数据镜像到多个从节点,实现高可用性和扩展性,主从复制包括初次全量同步和增量同步两个阶段,为优化复制性能,可以采用AOF持久化、调整复制超时时间、... 目录Redis主从复制的原理主从复制概述配置主从复制数据同步过程复制一致性与延迟故障转移机制监控与维

SpringCloud配置动态更新原理解析

《SpringCloud配置动态更新原理解析》在微服务架构的浩瀚星海中,服务配置的动态更新如同魔法一般,能够让应用在不重启的情况下,实时响应配置的变更,SpringCloud作为微服务架构中的佼佼者,... 目录一、SpringBoot、Cloud配置的读取二、SpringCloud配置动态刷新三、更新@R

Redis主从复制实现原理分析

《Redis主从复制实现原理分析》Redis主从复制通过Sync和CommandPropagate阶段实现数据同步,2.8版本后引入Psync指令,根据复制偏移量进行全量或部分同步,优化了数据传输效率... 目录Redis主DodMIK从复制实现原理实现原理Psync: 2.8版本后总结Redis主从复制实

深入探索协同过滤:从原理到推荐模块案例

文章目录 前言一、协同过滤1. 基于用户的协同过滤(UserCF)2. 基于物品的协同过滤(ItemCF)3. 相似度计算方法 二、相似度计算方法1. 欧氏距离2. 皮尔逊相关系数3. 杰卡德相似系数4. 余弦相似度 三、推荐模块案例1.基于文章的协同过滤推荐功能2.基于用户的协同过滤推荐功能 前言     在信息过载的时代,推荐系统成为连接用户与内容的桥梁。本文聚焦于

hdu4407(容斥原理)

题意:给一串数字1,2,......n,两个操作:1、修改第k个数字,2、查询区间[l,r]中与n互质的数之和。 解题思路:咱一看,像线段树,但是如果用线段树做,那么每个区间一定要记录所有的素因子,这样会超内存。然后我就做不来了。后来看了题解,原来是用容斥原理来做的。还记得这道题目吗?求区间[1,r]中与p互质的数的个数,如果不会的话就先去做那题吧。现在这题是求区间[l,r]中与n互质的数的和

maven 编译构建可以执行的jar包

💝💝💝欢迎莅临我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 推荐:「stormsha的主页」👈,「stormsha的知识库」👈持续学习,不断总结,共同进步,为了踏实,做好当下事儿~ 专栏导航 Python系列: Python面试题合集,剑指大厂Git系列: Git操作技巧GO

基于 YOLOv5 的积水检测系统:打造高效智能的智慧城市应用

在城市发展中,积水问题日益严重,特别是在大雨过后,积水往往会影响交通甚至威胁人们的安全。通过现代计算机视觉技术,我们能够智能化地检测和识别积水区域,减少潜在危险。本文将介绍如何使用 YOLOv5 和 PyQt5 搭建一个积水检测系统,结合深度学习和直观的图形界面,为用户提供高效的解决方案。 源码地址: PyQt5+YoloV5 实现积水检测系统 预览: 项目背景

pip-tools:打造可重复、可控的 Python 开发环境,解决依赖关系,让代码更稳定

在 Python 开发中,管理依赖关系是一项繁琐且容易出错的任务。手动更新依赖版本、处理冲突、确保一致性等等,都可能让开发者感到头疼。而 pip-tools 为开发者提供了一套稳定可靠的解决方案。 什么是 pip-tools? pip-tools 是一组命令行工具,旨在简化 Python 依赖关系的管理,确保项目环境的稳定性和可重复性。它主要包含两个核心工具:pip-compile 和 pip