Python学习笔记——数据分析之Bokeh绘图

2024-04-07 22:38

本文主要是介绍Python学习笔记——数据分析之Bokeh绘图,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

Bokeh

Bokeh接口

包引用

bokeh.charts

散点图 Scatter

柱状图 Bar

盒子图 BoxPlot

弦图 Chord

bokeh.plotting

方框 square, 圆形 circle


http://bokeh.pydata.org/en/latest

Bokeh

是一个专门针对Web浏览器的呈现功能的交互式可视化Python库。这是Bokeh与其它可视化库最核心的区别。

  • 专门针对Web浏览器的交互式、可视化Python绘图库

  • 可以做出像D3.js简洁漂亮的交互可视化效果,但是使用难度低于D3.js。

  • 独立的HTML文档或服务端程序

  • 可以处理大量、动态或数据流

  • 支持Python (或Scala, R, Julia…)

  • 不需要使用Javascript

Bokeh接口

  • Charts: 高层接口,以简单的方式绘制复杂的统计图

  • Plotting: 中层接口,用于组装图形元素

  • Models: 底层接口,为开发者提供了最大的灵活性

包引用

from bokeh.io import output_notebook, output_file, show
from bokeh.charts import Scatter, Bar, BoxPlot, Chord
from bokeh.layouts import row
import seaborn as sns# 导入数据
exercise = sns.load_dataset('exercise')output_notebook()
#output_file('test.html')
  • from bokeh.io import output_file 生成.html文档

  • from boken.io import output_notebook 在jupyter中使用

bokeh.charts

http://bokeh.pydata.org/en/latest/docs/reference/charts.html

散点图 Scatter

示例代码:

# 散点图
p = Scatter(data=exercise, x='id', y='pulse', title='exercise dataset')
show(p)

运行结果:

柱状图 Bar

示例代码:

# 柱状图
p = Bar(data=exercise, values='pulse', label='diet', stack='kind', title='exercise dataset')
show(p)

运行结果:

盒子图 BoxPlot

示例代码:

# 盒子图
box1 = BoxPlot(data=exercise, values='pulse', label='diet', color='diet', title='exercise dataset')
box2 = BoxPlot(data=exercise, values='pulse', label='diet', stack='kind', color='kind', title='exercise dataset')
show(row(box1, box2))

运行结果:

弦图 Chord

• 展示多个节点之间的联系

• 连线的粗细代表权重

示例代码:

# 弦图 Chord
chord1 = Chord(data=exercise, source="id", target="kind")
chord2 = Chord(data=exercise, source="id", target="kind", value="pulse")show(row(chord1, chord2))

运行结果:

bokeh.plotting

方框 square, 圆形 circle

示例代码:

from bokeh.plotting import figure
import numpy as npp = figure(plot_width=400, plot_height=400)
# 方框
p.square(np.random.randint(1,10,5), np.random.randint(1,10,5), size=20, color="navy")# 圆形
p.circle(np.random.randint(1,10,5), np.random.randint(1,10,5), size=10, color="green")
show(p)

运行结果:

更多图形元素参考:http://bokeh.pydata.org/en/latest/docs/reference/plotting.html

 

这篇关于Python学习笔记——数据分析之Bokeh绘图的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/883865

相关文章

Python结合PyWebView库打造跨平台桌面应用

《Python结合PyWebView库打造跨平台桌面应用》随着Web技术的发展,将HTML/CSS/JavaScript与Python结合构建桌面应用成为可能,本文将系统讲解如何使用PyWebView... 目录一、技术原理与优势分析1.1 架构原理1.2 核心优势二、开发环境搭建2.1 安装依赖2.2 验

一文详解如何在Python中从字符串中提取部分内容

《一文详解如何在Python中从字符串中提取部分内容》:本文主要介绍如何在Python中从字符串中提取部分内容的相关资料,包括使用正则表达式、Pyparsing库、AST(抽象语法树)、字符串操作... 目录前言解决方案方法一:使用正则表达式方法二:使用 Pyparsing方法三:使用 AST方法四:使用字

Python列表去重的4种核心方法与实战指南详解

《Python列表去重的4种核心方法与实战指南详解》在Python开发中,处理列表数据时经常需要去除重复元素,本文将详细介绍4种最实用的列表去重方法,有需要的小伙伴可以根据自己的需要进行选择... 目录方法1:集合(set)去重法(最快速)方法2:顺序遍历法(保持顺序)方法3:副本删除法(原地修改)方法4:

Python运行中频繁出现Restart提示的解决办法

《Python运行中频繁出现Restart提示的解决办法》在编程的世界里,遇到各种奇怪的问题是家常便饭,但是,当你的Python程序在运行过程中频繁出现“Restart”提示时,这可能不仅仅是令人头疼... 目录问题描述代码示例无限循环递归调用内存泄漏解决方案1. 检查代码逻辑无限循环递归调用内存泄漏2.

Python中判断对象是否为空的方法

《Python中判断对象是否为空的方法》在Python开发中,判断对象是否为“空”是高频操作,但看似简单的需求却暗藏玄机,从None到空容器,从零值到自定义对象的“假值”状态,不同场景下的“空”需要精... 目录一、python中的“空”值体系二、精准判定方法对比三、常见误区解析四、进阶处理技巧五、性能优化

使用Python构建一个Hexo博客发布工具

《使用Python构建一个Hexo博客发布工具》虽然Hexo的命令行工具非常强大,但对于日常的博客撰写和发布过程,我总觉得缺少一个直观的图形界面来简化操作,下面我们就来看看如何使用Python构建一个... 目录引言Hexo博客系统简介设计需求技术选择代码实现主框架界面设计核心功能实现1. 发布文章2. 加

python logging模块详解及其日志定时清理方式

《pythonlogging模块详解及其日志定时清理方式》:本文主要介绍pythonlogging模块详解及其日志定时清理方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录python logging模块及日志定时清理1.创建logger对象2.logging.basicCo

Python如何自动生成环境依赖包requirements

《Python如何自动生成环境依赖包requirements》:本文主要介绍Python如何自动生成环境依赖包requirements问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录生成当前 python 环境 安装的所有依赖包1、命令2、常见问题只生成当前 项目 的所有依赖包1、

如何将Python彻底卸载的三种方法

《如何将Python彻底卸载的三种方法》通常我们在一些软件的使用上有碰壁,第一反应就是卸载重装,所以有小伙伴就问我Python怎么卸载才能彻底卸载干净,今天这篇文章,小编就来教大家如何彻底卸载Pyth... 目录软件卸载①方法:②方法:③方法:清理相关文件夹软件卸载①方法:首先,在安装python时,下

python uv包管理小结

《pythonuv包管理小结》uv是一个高性能的Python包管理工具,它不仅能够高效地处理包管理和依赖解析,还提供了对Python版本管理的支持,本文主要介绍了pythonuv包管理小结,具有一... 目录安装 uv使用 uv 管理 python 版本安装指定版本的 Python查看已安装的 Python