java使用Deep Java Library(djl)搭配TorchScript搭建图片分类

2024-04-07 12:12

本文主要是介绍java使用Deep Java Library(djl)搭配TorchScript搭建图片分类,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、前置要求

1.1、下载TorchScript类型的模型,注意这里是TorchScript类型,有些模型在说明中会说明是否为该格式的文件。可以从huggingface下载,在huggingface注意未区分PyTorch和TorchScript,在模型下方的标签都标记的为PyTorch,需要看具体的描述是否说该模型为TorchScript。
1.2、pom文件引入依赖,注意和引擎相关的包需要搭配引用,例如ai.djl.pytorch的native和jni包与engine版本要对上。pom.xml引入包如下:

<properties><maven.compiler.source>11</maven.compiler.source><maven.compiler.target>11</maven.compiler.target><djl.version>0.27.0</djl.version></properties><dependencies><!-- https://mvnrepository.com/artifact/ai.djl/api --><dependency><groupId>ai.djl</groupId><artifactId>api</artifactId><version>${djl.version}</version></dependency><!-- https://mvnrepository.com/artifact/ai.djl/model-zoo --><dependency><groupId>ai.djl</groupId><artifactId>model-zoo</artifactId><version>${djl.version}</version></dependency><!-- https://mvnrepository.com/artifact/ai.djl.pytorch/pytorch-engine --><dependency><groupId>ai.djl.pytorch</groupId><artifactId>pytorch-engine</artifactId><version>${djl.version}</version></dependency><dependency><groupId>ai.djl</groupId><artifactId>basicdataset</artifactId><version>${djl.version}</version></dependency><dependency><groupId>ai.djl.pytorch</groupId><artifactId>pytorch-engine</artifactId><version>${djl.version}</version></dependency><dependency><groupId>ai.djl.pytorch</groupId><artifactId>pytorch-jni</artifactId><version>2.1.1-0.27.0</version></dependency><dependency><groupId>ai.djl.pytorch</groupId><artifactId>pytorch-native-cpu</artifactId><classifier>win-x86_64</classifier><version>2.1.1</version></dependency><dependency><groupId>ai.djl</groupId><artifactId>djl-zero</artifactId><version>${djl.version}</version></dependency><dependency><groupId>org.apache.logging.log4j</groupId><artifactId>log4j-slf4j-impl</artifactId><version>2.21.0</version></dependency></dependencies>

二、java代码

将下载好的模型放到对应的位置,其中模型文件包含两个部分,一个是pt结尾的文件,当然结尾不一定是这个,可能是其他的,可以使用压缩文件打开这个模型文件看看是否包含了constants.pkl等文件,这个可以用作确认是否为TorchScript的一个标志。然后还需要一个synset.txt文件。

//这里也可以使用在线的模型
private static final URL MODEL_URL = NSFWUtil.class.getClassLoader().getResource("model/xxx.pt");public static void main(String[] args) throws MalformedModelException, IOException, ModelNotFoundException, TranslateException {getNSFW4JSON("image path");}/*** * @param imagePath 文件地址* @throws ModelNotFoundException * @throws MalformedModelException* @throws IOException* @throws TranslateException* @return nsfw的json*/public static Classifications  getNSFW4JSON(String imagePath) throws ModelNotFoundException, MalformedModelException, IOException, TranslateException {Image img = ImageFactory.getInstance().fromFile(Paths.get(imagePath));Translator<Image, Classifications> translator =ImageClassificationTranslator.builder().addTransform(new Resize(224, 224)).addTransform(new ToTensor()).optApplySoftmax(true).build();Criteria<Image, Classifications> criteria = Criteria.builder().setTypes(Image.class, Classifications.class).optModelUrls(MODEL_URL.toString()).optTranslator(translator).optEngine("PyTorch") // Use PyTorch engine.optProgress(new ProgressBar()).build();try (ZooModel<Image, Classifications> model = criteria.loadModel()){Predictor<Image, Classifications> predictor = model.newPredictor();return predictor.predict(img);}}/*** * @param in 输入流* @throws ModelNotFoundException * @throws MalformedModelException* @throws IOException* @throws TranslateException* @return nsfw的json*/public static Classifications  getNSFW4JSON(InputStream in) throws ModelNotFoundException, MalformedModelException, IOException, TranslateException {Image img = BufferedImageFactory.getInstance().fromInputStream(in);Translator<Image, Classifications> translator =ImageClassificationTranslator.builder().addTransform(new Resize(224, 224)).addTransform(new ToTensor()).optApplySoftmax(true).build();Criteria<Image, Classifications> criteria = Criteria.builder().setTypes(Image.class, Classifications.class).optModelUrls(MODEL_URL.toString()).optTranslator(translator).optEngine("PyTorch") // Use PyTorch engine.optProgress(new ProgressBar()).build();try (ZooModel<Image, Classifications> model = criteria.loadModel()){Predictor<Image, Classifications> predictor = model.newPredictor();return predictor.predict(img);}}

三、总结

3.1、代码中的ImageClassificationTranslator在其他很多时候是自己在定义具体的方法实现,这里我们是图片分类,所以我们用的是官方提供的Translator。
3.2、就目前来说框架帮我们实现了很多的代码,能写的代码不是很多,难点在于如何找到能用的模型,目前很多模型还是PyTorch类型的,无法在JAVA或者C++环境调用。
3.3、可以试一下的模型nsfw,记住下synset.txt

这篇关于java使用Deep Java Library(djl)搭配TorchScript搭建图片分类的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/882570

相关文章

Python中注释使用方法举例详解

《Python中注释使用方法举例详解》在Python编程语言中注释是必不可少的一部分,它有助于提高代码的可读性和维护性,:本文主要介绍Python中注释使用方法的相关资料,需要的朋友可以参考下... 目录一、前言二、什么是注释?示例:三、单行注释语法:以 China编程# 开头,后面的内容为注释内容示例:示例:四

SpringBoot整合liteflow的详细过程

《SpringBoot整合liteflow的详细过程》:本文主要介绍SpringBoot整合liteflow的详细过程,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋...  liteflow 是什么? 能做什么?总之一句话:能帮你规范写代码逻辑 ,编排并解耦业务逻辑,代码

JavaSE正则表达式用法总结大全

《JavaSE正则表达式用法总结大全》正则表达式就是由一些特定的字符组成,代表的是一个规则,:本文主要介绍JavaSE正则表达式用法的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录常用的正则表达式匹配符正则表China编程达式常用的类Pattern类Matcher类PatternSynta

Spring Security中用户名和密码的验证完整流程

《SpringSecurity中用户名和密码的验证完整流程》本文给大家介绍SpringSecurity中用户名和密码的验证完整流程,本文结合实例代码给大家介绍的非常详细,对大家的学习或工作具有一定... 首先创建了一个UsernamePasswordAuthenticationTChina编程oken对象,这是S

java实现docker镜像上传到harbor仓库的方式

《java实现docker镜像上传到harbor仓库的方式》:本文主要介绍java实现docker镜像上传到harbor仓库的方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录1. 前 言2. 编写工具类2.1 引入依赖包2.2 使用当前服务器的docker环境推送镜像2.2

Java easyExcel实现导入多sheet的Excel

《JavaeasyExcel实现导入多sheet的Excel》这篇文章主要为大家详细介绍了如何使用JavaeasyExcel实现导入多sheet的Excel,文中的示例代码讲解详细,感兴趣的小伙伴可... 目录1.官网2.Excel样式3.代码1.官网easyExcel官网2.Excel样式3.代码

Java MQTT实战应用

《JavaMQTT实战应用》本文详解MQTT协议,涵盖其发布/订阅机制、低功耗高效特性、三种服务质量等级(QoS0/1/2),以及客户端、代理、主题的核心概念,最后提供Linux部署教程、Sprin... 目录一、MQTT协议二、MQTT优点三、三种服务质量等级四、客户端、代理、主题1. 客户端(Clien

Java中调用数据库存储过程的示例代码

《Java中调用数据库存储过程的示例代码》本文介绍Java通过JDBC调用数据库存储过程的方法,涵盖参数类型、执行步骤及数据库差异,需注意异常处理与资源管理,以优化性能并实现复杂业务逻辑,感兴趣的朋友... 目录一、存储过程概述二、Java调用存储过程的基本javascript步骤三、Java调用存储过程示

Go语言数据库编程GORM 的基本使用详解

《Go语言数据库编程GORM的基本使用详解》GORM是Go语言流行的ORM框架,封装database/sql,支持自动迁移、关联、事务等,提供CRUD、条件查询、钩子函数、日志等功能,简化数据库操作... 目录一、安装与初始化1. 安装 GORM 及数据库驱动2. 建立数据库连接二、定义模型结构体三、自动迁

ModelMapper基本使用和常见场景示例详解

《ModelMapper基本使用和常见场景示例详解》ModelMapper是Java对象映射库,支持自动映射、自定义规则、集合转换及高级配置(如匹配策略、转换器),可集成SpringBoot,减少样板... 目录1. 添加依赖2. 基本用法示例:简单对象映射3. 自定义映射规则4. 集合映射5. 高级配置匹