Codeforces Contest 1076 problem D Edge Deletion —— dijkstra的一些优化

2024-04-07 00:48

本文主要是介绍Codeforces Contest 1076 problem D Edge Deletion —— dijkstra的一些优化,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

You are given an undirected connected weighted graph consisting of n vertices and m edges. Let’s denote the length of the shortest path from vertex 1 to vertex i as di.

You have to erase some edges of the graph so that at most k edges remain. Let’s call a vertex i good if there still exists a path from 1 to i with length di after erasing the edges.

Your goal is to erase the edges in such a way that the number of good vertices is maximized.

Input
The first line contains three integers n, m and k (2≤n≤3⋅105, 1≤m≤3⋅105, n−1≤m, 0≤k≤m) — the number of vertices and edges in the graph, and the maximum number of edges that can be retained in the graph, respectively.

Then m lines follow, each containing three integers x, y, w (1≤x,y≤n, x≠y, 1≤w≤109), denoting an edge connecting vertices x and y and having weight w.

The given graph is connected (any vertex can be reached from any other vertex) and simple (there are no self-loops, and for each unordered pair of vertices there exists at most one edge connecting these vertices).

Output
In the first line print e — the number of edges that should remain in the graph (0≤e≤k).

In the second line print e distinct integers from 1 to m — the indices of edges that should remain in the graph. Edges are numbered in the same order they are given in the input. The number of good vertices should be as large as possible.

Examples
inputCopy
3 3 2
1 2 1
3 2 1
1 3 3
outputCopy
2
1 2
inputCopy
4 5 2
4 1 8
2 4 1
2 1 3
3 4 9
3 1 5
outputCopy
2
3 2

题意:

给你n个点,m条边,你需要删除一些边使得剩下的边的数量小于等于k,并且我们规定,一个点是“好的”是在删边以后1到这个点的最短距离等于删边之前的最短距离,让你求出需要剩下哪些边使得“好的”的路最多。

题解:

dijkstra求出1到所有点的距离,之后从第一个点出发,看看与它相邻的点有哪些是之前就是最短的,然后放到队列里面,同时ans数组push进去这条边的id,对于这题有一些优化,首先最大的优化是这个:
dijkstra的时候不要用vis数组纪录,而是在pop的时候看这一个状态的点过来的最短路是否等于当前的最短路,如果不是就说明它之后有状态比它更优,还有就是不要把自定义结构体放到队列里,用pa会快,不要用map,直接将这条边的id放到结构体里,还有就是查询和dijkstra可以一起做。
分开做的情况:
在这里插入图片描述

#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define pa pair<ll,int>
const int N=3e5+5;
const ll inf=1e17;
struct node
{int to,next,id;ll val;
}e[N*2];
int head[N],cnt;
void add(int x,int y,ll w,int id)
{e[cnt].to=y;e[cnt].next=head[x];e[cnt].val=w;e[cnt].id=id;head[x]=cnt++;
}
ll dis[N];
int vis[N],last[N];
vector<int>ans;
void dijkstra()
{priority_queue<pa>Q;dis[1]=0;Q.push({0,1});while(!Q.empty()){pa u=Q.top();Q.pop();if(-u.first!=dis[u.second])continue;for(int i=head[u.second];~i;i=e[i].next){int v=e[i].to;ll w=e[i].val;if(dis[v]>dis[u.second]+w){dis[v]=dis[u.second]+w;Q.push({-dis[v],v});}}}
}
void check(int x)
{priority_queue<pa>Q;dis[1]=0;Q.push({0,1});vis[1]=1;while(!Q.empty()&&x){pa u=Q.top();Q.pop();for(int i=head[u.second];~i;i=e[i].next){int v=e[i].to;ll w=e[i].val;if(vis[v])continue;if(dis[v]==dis[u.second]+w){Q.push({-dis[v],v});vis[v]=1;ans.push_back(e[i].id);x--;}if(x<=0)break;}}
}
int main()
{//freopen("in.txt","r",stdin);memset(head,-1,sizeof(head));for(int i=1;i<N;i++)dis[i]=inf;int x,y;ll w;int n,m,k;scanf("%d%d%d",&n,&m,&k);for(int i=1;i<=m;i++){scanf("%d%d%lld",&x,&y,&w);add(x,y,w,i),add(y,x,w,i);}dijkstra();check(k);printf("%d\n",ans.size());for(int i=0;i<ans.size();i++)printf("%d%c",ans[i],i==ans.size()-1?'\n':' ');return 0;
}

合起来的情况:就是加一个数组在搜的时候就记录最优解的id
在这里插入图片描述

#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define pa pair<ll,int>
const int N=3e5+5;
const ll inf=1e17;
struct node
{int to,next,id;ll val;
}e[N*2];
int head[N],cnt;
void add(int x,int y,ll w,int id)
{e[cnt].to=y;e[cnt].next=head[x];e[cnt].val=w;e[cnt].id=id;head[x]=cnt++;
}
ll dis[N];
int vis[N],last[N];
vector<int>ans;
void dijkstra(int x)
{priority_queue<pa>Q;dis[1]=0;Q.push({0,1});while(!Q.empty()&&x){pa u=Q.top();Q.pop();if(-u.first!=dis[u.second])continue;if(last[u.second])x--,ans.push_back(last[u.second]);for(int i=head[u.second];~i;i=e[i].next){int v=e[i].to;ll w=e[i].val;if(dis[v]>dis[u.second]+w){dis[v]=dis[u.second]+w;Q.push({-dis[v],v});last[v]=e[i].id;}}}
}
int main()
{//freopen("in.txt","r",stdin);memset(head,-1,sizeof(head));for(int i=1;i<N;i++)dis[i]=inf;int x,y;ll w;int n,m,k;scanf("%d%d%d",&n,&m,&k);for(int i=1;i<=m;i++){scanf("%d%d%lld",&x,&y,&w);add(x,y,w,i),add(y,x,w,i);}dijkstra(k);printf("%d\n",ans.size());for(int i=0;i<ans.size();i++)printf("%d%c",ans[i],i==ans.size()-1?'\n':' ');return 0;
}

这篇关于Codeforces Contest 1076 problem D Edge Deletion —— dijkstra的一些优化的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/881257

相关文章

Tomcat高效部署与性能优化方式

《Tomcat高效部署与性能优化方式》本文介绍了如何高效部署Tomcat并进行性能优化,以确保Web应用的稳定运行和高效响应,高效部署包括环境准备、安装Tomcat、配置Tomcat、部署应用和启动T... 目录Tomcat高效部署与性能优化一、引言二、Tomcat高效部署三、Tomcat性能优化总结Tom

解读Redis秒杀优化方案(阻塞队列+基于Stream流的消息队列)

《解读Redis秒杀优化方案(阻塞队列+基于Stream流的消息队列)》该文章介绍了使用Redis的阻塞队列和Stream流的消息队列来优化秒杀系统的方案,通过将秒杀流程拆分为两条流水线,使用Redi... 目录Redis秒杀优化方案(阻塞队列+Stream流的消息队列)什么是消息队列?消费者组的工作方式每

Oracle查询优化之高效实现仅查询前10条记录的方法与实践

《Oracle查询优化之高效实现仅查询前10条记录的方法与实践》:本文主要介绍Oracle查询优化之高效实现仅查询前10条记录的相关资料,包括使用ROWNUM、ROW_NUMBER()函数、FET... 目录1. 使用 ROWNUM 查询2. 使用 ROW_NUMBER() 函数3. 使用 FETCH FI

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

Java内存泄漏问题的排查、优化与最佳实践

《Java内存泄漏问题的排查、优化与最佳实践》在Java开发中,内存泄漏是一个常见且令人头疼的问题,内存泄漏指的是程序在运行过程中,已经不再使用的对象没有被及时释放,从而导致内存占用不断增加,最终... 目录引言1. 什么是内存泄漏?常见的内存泄漏情况2. 如何排查 Java 中的内存泄漏?2.1 使用 J

MySQL不使用子查询的原因及优化案例

《MySQL不使用子查询的原因及优化案例》对于mysql,不推荐使用子查询,效率太差,执行子查询时,MYSQL需要创建临时表,查询完毕后再删除这些临时表,所以,子查询的速度会受到一定的影响,本文给大家... 目录不推荐使用子查询和JOIN的原因解决方案优化案例案例1:查询所有有库存的商品信息案例2:使用EX

MySQL中my.ini文件的基础配置和优化配置方式

《MySQL中my.ini文件的基础配置和优化配置方式》文章讨论了数据库异步同步的优化思路,包括三个主要方面:幂等性、时序和延迟,作者还分享了MySQL配置文件的优化经验,并鼓励读者提供支持... 目录mysql my.ini文件的配置和优化配置优化思路MySQL配置文件优化总结MySQL my.ini文件

正则表达式高级应用与性能优化记录

《正则表达式高级应用与性能优化记录》本文介绍了正则表达式的高级应用和性能优化技巧,包括文本拆分、合并、XML/HTML解析、数据分析、以及性能优化方法,通过这些技巧,可以更高效地利用正则表达式进行复杂... 目录第6章:正则表达式的高级应用6.1 模式匹配与文本处理6.1.1 文本拆分6.1.2 文本合并6

Vue3 的 shallowRef 和 shallowReactive:优化性能

大家对 Vue3 的 ref 和 reactive 都很熟悉,那么对 shallowRef 和 shallowReactive 是否了解呢? 在编程和数据结构中,“shallow”(浅层)通常指对数据结构的最外层进行操作,而不递归地处理其内部或嵌套的数据。这种处理方式关注的是数据结构的第一层属性或元素,而忽略更深层次的嵌套内容。 1. 浅层与深层的对比 1.1 浅层(Shallow) 定义

HDFS—存储优化(纠删码)

纠删码原理 HDFS 默认情况下,一个文件有3个副本,这样提高了数据的可靠性,但也带来了2倍的冗余开销。 Hadoop3.x 引入了纠删码,采用计算的方式,可以节省约50%左右的存储空间。 此种方式节约了空间,但是会增加 cpu 的计算。 纠删码策略是给具体一个路径设置。所有往此路径下存储的文件,都会执行此策略。 默认只开启对 RS-6-3-1024k