OpenTSDB Stats - OpenTSDB 统计信息

2024-04-06 19:08
文章标签 统计 信息 stats opentsdb

本文主要是介绍OpenTSDB Stats - OpenTSDB 统计信息,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Stats   统计

OpenTSDB offers a number of metrics about its performance, accessible via various API endpoints. The main stats are accessible from the GUI via the "Stats" tab, from the Http API at /api/stats or the legacy API at /stats. The Telnet style API also supports the "stats" command for fetching over CLI. These can easily be published right back into OpenTSDB at any interval you like.

OpenTSDB提供了许多有关其性能的指标,可以通过各种API端点进行访问。可以通过“stats”选项卡从GUI、http api at/api/stats或传统api at/stats访问主要统计信息。telnet风格的api还支持通过cli获取的“stats”命令。这些可以很容易地以您喜欢的任何时间间隔发布返回OpenTSDB。

Additional stats available include JVM information, storage details (e.g. per-region-client HBase stats) and executed query details. See /api/stats for more details about the other endpoints.

其他可用的统计信息包括JVM信息、存储详细信息(例如每个区域的客户机HBase统计信息)和执行的查询详细信息。有关其他端点的详细信息,请参阅/api/stats。

All metrics from the main stats endpoint include a host tag that includes the name of the host where the TSD is running. If the tsd.stats.canonical configuration flag is set, this will change to fqdn and the TSD will try to resolve its host name to return the fully qualified domain name. Currently all stats are integer values. Each request for stats will fetch statistics in real time so the timestamp will reflect the current time on the TSD host.

来自主统计端点的所有指标都包括一个主机标记,该标记包含运行TSD的主机的名称。如果设置了tsd.stats.canonical配置标志,这将更改为fqdn,并且tsd将尝试解析其主机名以返回完全限定的域名。目前所有的统计数据都是整数值。每个统计请求将实时获取统计信息,因此时间戳将反映TSD主机上的当前时间。

Note  注释

The /api/stats endpoint is a good place to execute a health check for your TSD as it will execute a query to storage for fetching UID stats. If the TSD is unable to reach the backing store, the API will return an exception.

/api/stats端点是为TSD执行运行状况检查的好地方,因为它将执行到存储区的查询以获取uid状态。如果TSD无法到达备份存储,API将返回异常。

【下面这个表格就是openTSDB系统自带的metrics信息】

MetricTagsTypeDescription
tsd.connectionmgr.connectionstype=open

Gauge

计量器

The number of currently open Telnet and HTTP connections.

 

当前打开的telnet和http连接数。

tsd.connectionmgr.connectionstype=totalCounter

The total number of connections made to OpenTSDB. This includes all Telnet and HTTP connections.

 

OpenTSDB的连接总数。这包括所有telnet和http连接。

tsd.connectionmgr.exceptionstype=closedCounter

The total number of exceptions caused by writes to a channel that was already closed. This can occur if a query takes too long, the client closes their connection gracefully, and the TSD attempts to write to the socket. This includes all Telnet and HTTP connections.

由于写入已关闭的通道而导致的异常总数。如果查询花费的时间太长,客户机正常关闭连接,并且TSD尝试写入套接字,则可能发生这种情况。这包括所有telnet和http连接。

tsd.connectionmgr.exceptionstype=resetCounter

The total number of exceptions caused by a client disconnecting without closing the socket. This includes all Telnet and HTTP connections.

客户端在不关闭套接字的情况下断开连接而导致的异常总数。这包括所有telnet和http连接。

tsd.connectionmgr.exceptionstype=timeoutCounter

The total exceptions caused by a socket inactivity timeout, i.e. the TSD neither wrote nor received data from a socket within the timeout period. This includes all Telnet and HTTP connections.

套接字不活动超时导致的总异常,即TSD在超时期间既没有写入也没有从套接字接收数据。这包括所有telnet和http连接。

tsd.connectionmgr.exceptionstype=unknownCounter

The total exceptions with an unknown cause. Check the logs for details. This includes all Telnet and HTTP connections.

具有未知原因的全部异常。查看日志了解详细信息。这包括所有telnet和http连接。

tsd.rpc.receivedtype=telnetCounter

The total number of telnet RPC requests received

已接收的telnet rpc请求总数

tsd.rpc.receivedtype=httpCounter

The total number of Http RPC requests received

已接收的HTTP RPC请求总数

tsd.rpc.receivedtype=http_pluginCounter

The total number of Http RPC requests received and handled by a plugin instead of the built-in APIs. (v2.2)

插件而不是内置API接收和处理的HTTP RPC请求总数。

tsd.rpc.exceptions Counter

The total number exceptions caught during RPC calls. These may be user error or bugs.

在RPC调用期间捕获的异常总数。这些可能是用户错误或错误。

tsd.http.latency_50pcttype=allGauge

The time it took, in milliseconds, to answer HTTP requests for the 50th percentile cases

回答第50个百分位数的HTTP请求所用的时间(以毫秒计)

tsd.http.latency_75pcttype=allGauge

The time it took, in milliseconds, to answer HTTP requests for the 75th percentile cases

回答第75个百分位数的HTTP请求所用的时间(以毫秒计)

tsd.http.latency_90pcttype=allGauge

The time it took, in milliseconds, to answer HTTP requests for the 90th percentile cases

回答第90个百分位数的HTTP请求所用的时间(以毫秒计)

tsd.http.latency_95pcttype=allGauge

The time it took, in milliseconds, to answer HTTP requests for the 95th percentile cases

回答第95个百分位数的HTTP请求所用的时间(以毫秒计)

tsd.http.latency_50pcttype=graphGauge

The time it took, in milliseconds, to answer graphing requests for the 50th percentile cases

回答第50个百分位数的图表请求所用的时间(以毫秒计)

tsd.http.latency_75pcttype=graphGauge

The time it took, in milliseconds, to answer graphing requests for the 75th percentile cases

回答第75个百分位数的图表请求所用的时间(以毫秒计)

tsd.http.latency_90pcttype=graphGauge

The time it took, in milliseconds, to answer graphing requests for the 90th percentile cases

回答第90个百分位数的图表请求所用的时间(以毫秒计)

tsd.http.latency_95pcttype=graphGauge

The time it took, in milliseconds, to answer graphing requests for the 95th percentile cases

回答第95个百分位数的图表请求所用的时间(以毫秒计)

tsd.http.latency_50pcttype=gnuplotGauge

The time it took, in milliseconds, to generate the GnuPlot graphs for the 50th percentile cases

生成第50个百分位数的gnuplot图所用的时间(以毫秒计)

tsd.http.latency_75pcttype=gnuplotGauge

The time it took, in milliseconds, to generate the GnuPlot graphs for the 75th percentile cases

生成第75个百分位数的gnuplot图所用的时间(以毫秒计)

tsd.http.latency_90pcttype=gnuplotGauge

The time it took, in milliseconds, to generate the GnuPlot graphs for the 90th percentile cases

生成第90个百分位数的gnuplot图所用的时间(以毫秒计)

tsd.http.latency_95pcttype=gnuplotGauge

The time it took, in milliseconds, to generate the GnuPlot graphs for the 95th percentile cases

生成第95个百分位数的gnuplot图所用的时间(以毫秒计)

tsd.http.graph.requestscache=diskCounter

The total number of graph requests satisfied from the disk cache

从磁盘缓存满 足的图形请求总数

tsd.http.graph.requestscache=missCounter

The total number of graph requests that were not cached and required a fetch from storage

未缓存且需要从存储中提取的图形请求总数

tsd.http.query.invalid_requests Counter

The total number data queries sent to the /api/query endpoint that were invalid due to user errors such as using the wrong HTTP method, missing parameters or using metrics and tags without UIDs. (v2.2)

由于用户错误(如使用错误的HTTP方法、缺少参数或使用不带uid的度量和标记)而发送到/api/查询终结点的无效数据查询总数。

tsd.http.query.exceptions Counter

The total number data queries sent to the /api/query endpoint that threw an exception due to bad user input or an underlying error. See logs for details. (v2.2)

发送到/api/查询终结点的、由于错误的用户输入或基础错误引发异常的数据查询总数。有关详细信息,请参阅日志。

tsd.http.query.success Counter

The total number data queries sent to the /api/query endpoint that completed successfully. Note that these may have returned an empty result. (v2.2)

发送到/api/查询终结点并成功完成的数据查询总数。请注意,这些可能返回了一个空结果。

tsd.rpc.receivedtype=putCounter

The total number of put requests for writing data points

写入数据点的输入请求总数

tsd.rpc.errorstype=hbase_errorsCounter

The total number of RPC errors caused by HBase exceptions

由HBase异常引起的RPC错误总数

tsd.rpc.errorstype=invalid_valuesCounter

The total number of RPC errors caused invalid put values from user requests, such as a string instead of a number

从用户请求(如字符串而不是数字)引起的无效PUT值的RPC错误总数

tsd.rpc.errorstype=illegal_argumentsCounter

The total number of RPC errors caused by bad data from the user

由用户的错误数据导致的RPC错误总数

tsd.rpc.errorstype=socket_writes_blockedCounter

The total number of times the TSD was unable to write back to the telnet socket due to a full buffer. If this happens it likely means a number of exceptions were happening. (v2.2)

由于缓冲区已满,TSD无法回写telnet套接字的总次数。如果发生这种情况,可能意味着发生了一些异常。

tsd.rpc.errorstype=unknown_metricsCounter

The total number of RPC errors caused by attempts to put a metric without an assigned UID. This only increments if auto metrics is disabled.

尝试在没有分配uid的情况下输入度量值而导致的RPC错误总数。仅当禁用自动度量时,此值才会增加。

tsd.uid.cache-hitkind=metricsCounter

The total number of successful cache lookups for metric UIDs

成功查找度量UID的缓存的总数

tsd.uid.cache-misskind=metricsCounter

The total number of failed cache lookups for metric UIDs that required a call to storage

需要调用存储的度量UID的缓存查找失败总数

tsd.uid.cache-sizekind=metricsGauge

The current number of cached metric UIDs

当前缓存的度量UID数

tsd.uid.ids-usedkind=metricsCounter

The current number of assigned metric UIDs. (NOTE: if random metric UID generation is enabled ids-used will always be 0)

分配的度量UID的当前数目。(注意:如果启用随机度量uid生成,则使用的ID将始终为0)

tsd.uid.ids-availablekind=metricsCounter

The current number of available metric UIDs, decrements as UIDs are assigned. (NOTE: if random metric UID generation is enabled ids-used will always be 0)

当前可用度量uid的数目,递减为uid。(注意:如果启用随机度量uid生成,则使用的ID将始终为0)

tsd.uid.random-collisionskind=metricsCounter

How many times metric UIDs attempted a reassignment due to a collision with an existing UID. (v2.2)

由于与现有uid冲突,metric uid尝试重新分配的次数。

tsd.uid.cache-hitkind=tagkCounter

The total number of successful cache lookups for tagk UIDs

成功查找Tagk Uid的缓存总数

tsd.uid.cache-misskind=tagkCounter

The total number of failed cache lookups for tagk UIDs that required a call to storage

需要调用存储的tagk uid的缓存查找失败总数

tsd.uid.cache-sizekind=tagkGauge

The current number of cached tagk UIDs

当前缓存的标记UID数

tsd.uid.ids-usedkind=tagkCounter

The current number of assigned tagk UIDs

当前分配的标记UID数

tsd.uid.ids-availablekind=tagkCounter

The current number of available tagk UIDs, decrements as UIDs are assigned.

当前可用标记UID的数目,递减为UID。

tsd.uid.cache-hitkind=tagvCounter

The total number of successful cache lookups for tagv UIDs

成功查找tagv-uids的缓存的总数

tsd.uid.cache-misskind=tagvCounter

The total number of failed cache lookups for tagv UIDs that required a call to storage

需要调用存储的tagv uid的缓存查找失败总数

tsd.uid.cache-sizekind=tagvGauge

The current number of cached tagv UIDs

当前缓存的Tagv Uid数

tsd.uid.ids-usedkind=tagvCounter

The current number of assigned tagv UIDs

当前分配的tagv uids数

tsd.uid.ids-availablekind=tagvCounter

The current number of available tagv UIDs, decrements as UIDs are assigned.

当前可用的标记UID数,递减为uids。

tsd.jvm.ramfree Gauge

The number of bytes reported as free by the JVM's Runtime.freeMemory()

jvm的运行时报告为可用的字节数。

tsd.jvm.ramused Gauge

The number of bytes reported as used by the JVM's Runtime.totalMemory()

jvm运行时使用的报告字节数

tsd.hbase.latency_50pctmethod=putGauge

The time it took, in milliseconds, to execute a Put call for the 50th percentile cases

执行第50个百分位数事例的Put调用所用的时间(以毫秒计)

tsd.hbase.latency_75pctmethod=putGauge

The time it took, in milliseconds, to execute a Put call for the 75th percentile cases

执行第75个百分位数事例的Put调用所用的时间(以毫秒计)

tsd.hbase.latency_90pctmethod=putGauge

The time it took, in milliseconds, to execute a Put call for the 90th percentile cases

执行第90个百分位数的Put调用所用的时间(以毫秒计)

tsd.hbase.latency_95pctmethod=putGauge

The time it took, in milliseconds, to execute a Put call for the 95th percentile cases

执行第95个百分位数的Put调用所用的时间(以毫秒计)

tsd.hbase.latency_50pctmethod=scanGauge

The time it took, in milliseconds, to execute a Scan call for the 50th percentile cases

执行第50个百分位数的扫描调用所用的时间(以毫秒计)

tsd.hbase.latency_75pctmethod=scanGauge

The time it took, in milliseconds, to execute a Scan call for the 75th percentile cases

执行第75个百分位数的扫描调用所用的时间(以毫秒计)

tsd.hbase.latency_90pctmethod=scanGauge

The time it took, in milliseconds, to execute a Scan call for the 90th percentile cases

执行第90个百分位数的扫描调用所用的时间(以毫秒计)

tsd.hbase.latency_95pctmethod=scanGauge

The time it took, in milliseconds, to execute a Scan call for the 95th percentile cases

执行第95个百分位数的扫描调用所用的时间(以毫秒计)

tsd.hbase.root_lookups Counter

The total number of root lookups performed by the client

客户端执行的根查找总数

tsd.hbase.meta_lookupstype=uncontendedCounter

The total number of uncontended meta table lookups performed by the client

客户端执行的未扩展元表查找的总数

tsd.hbase.meta_lookupstype=contendedCounter

The total number of contended meta table lookups performed by the client

客户端执行的争用元表查找的总数

tsd.hbase.rpcstype=incrementCounter

The total number of Increment requests performed by the client

客户端执行的增量请求总数

tsd.hbase.rpcstype=deleteCounter

The total number of Delete requests performed by the client

客户端执行的删除请求总数

tsd.hbase.rpcstype=getCounter

The total number of Get requests performed by the client

客户端执行的GET请求总数

tsd.hbase.rpcstype=putCounter

The total number of Put requests performed by the client

客户端执行的Put请求总数

tsd.hbase.rpcstype=rowLockCounter

The total number of Row Lock requests performed by the client

客户端执行的行锁定请求总数

tsd.hbase.rpcstype=openScannerCounter

The total number of Open Scanner requests performed by the client

客户端执行的打开扫描程序请求总数

tsd.hbase.rpcstype=scanCounter

The total number of Scan requests performed by the client. These indicate a scan->next() call.

客户端执行的扫描请求总数。这表示一个scan->next()调用。

tsd.hbase.rpcs.batched Counter

The total number of batched requests sent by the client

客户端发送的批处理请求总数

tsd.hbase.flushes Counter

The total number of flushes performed by the client

客户端执行的刷新总数

tsd.hbase.connections.created Counter

The total number of connections made by the client to region servers

客户端到区域服务器的连接总数

tsd.hbase.nsre Counter

The total number of No Such Region Exceptions caught. These can happen when a region server crashes, is taken offline or when a region splits (?)

未捕获此类区域异常的总数。当区域服务器崩溃、脱机或区域拆分时,可能会发生这种情况

tsd.hbase.nsre.rpcs_delayed Counter

The total number of calls delayed due to an NSRE that were later successfully executed

由于稍后成功执行的NSRE而延迟的调用总数

tsd.hbase.region_clients.open Counter

The total number of connections opened to region servers since the TSD started. If this number is climbing the region servers may be crashing and restarting. (v2.2)

自TSD启动以来打开到区域服务器的连接总数。如果这个数字在上升,区域服务器可能会崩溃并重新启动。

tsd.hbase.region_clients.idle_closed Counter

The total number of connections to region servers that were closed due to idle connections. This indicates nothing was read from or written to a server in some time and the TSD will reconnect when it needs to. (v2.2)

由于空闲连接而关闭的与区域服务器的连接总数。这表示在一段时间内没有从服务器读取或写入任何内容,TSD将在需要时重新连接。

tsd.compaction.counttype=trivialCounter

The total number of trivial compactions performed by the TSD

TSD执行的平凡压缩的总数

tsd.compaction.counttype=complexCounter

The total number of complex compactions performed by the TSD

TSD执行的复杂压实的总数

tsd.compaction.duplicatestype=identicalCounter

The total number of data points found during compaction that were duplicates at the same time and with the same value. (v2.2)

在压缩过程中发现的同时重复且值相同的数据点总数。

tsd.compaction.duplicatestype=variantCounter

The total number of data points found during compaction that were duplicates at the same time but with a different value. (v2.2)

在压缩过程中发现的同时重复但值不同的数据点总数

tsd.compaction.queue.size Gauge

How many rows of data are currently in the queue to be compacted. (v2.2)

队列中当前要压缩的数据行数

tsd.compaction.errorstype=readCounter

The total number of rows that couldn't be read from storage due to an error of some sort. (v2.2)

由于某种类型的错误而无法从存储中读取的行的总数

tsd.compaction.errorstype=putCounter

The total number of rows that couldn't be re-written to storage due to an error of some sort. (v2.2)

由于某种类型的错误而无法重新写入存储的行的总数

tsd.compaction.errorstype=deleteCounter

The total number of rows that couldn't have the old non-compacted data deleted from storage due to an error of some sort. (v2.2)

由于某种类型的错误而无法从存储中删除旧的未压缩数据的行总数

tsd.compaction.writestype=readCounter

The total number of writes back to storage of compacted values. (v2.2)

回写压缩值存储的总次数。

tsd.compaction.deletestype=readCounter

The total number of delete calls made to storage to remove old data that has been compacted. (v2.2)

为删除已压缩的旧数据而对存储进行的删除调用的总数。

原文:http://opentsdb.net/docs/build/html/user_guide/stats.html

这篇关于OpenTSDB Stats - OpenTSDB 统计信息的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/880602

相关文章

hdu1496(用hash思想统计数目)

作为一个刚学hash的孩子,感觉这道题目很不错,灵活的运用的数组的下标。 解题步骤:如果用常规方法解,那么时间复杂度为O(n^4),肯定会超时,然后参考了网上的解题方法,将等式分成两个部分,a*x1^2+b*x2^2和c*x3^2+d*x4^2, 各自作为数组的下标,如果两部分相加为0,则满足等式; 代码如下: #include<iostream>#include<algorithm

业务中14个需要进行A/B测试的时刻[信息图]

在本指南中,我们将全面了解有关 A/B测试 的所有内容。 我们将介绍不同类型的A/B测试,如何有效地规划和启动测试,如何评估测试是否成功,您应该关注哪些指标,多年来我们发现的常见错误等等。 什么是A/B测试? A/B测试(有时称为“分割测试”)是一种实验类型,其中您创建两种或多种内容变体——如登录页面、电子邮件或广告——并将它们显示给不同的受众群体,以查看哪一种效果最好。 本质上,A/B测

【北交大信息所AI-Max2】使用方法

BJTU信息所集群AI_MAX2使用方法 使用的前提是预约到相应的算力卡,拥有登录权限的账号密码,一般为导师组共用一个。 有浏览器、ssh工具就可以。 1.新建集群Terminal 浏览器登陆10.126.62.75 (如果是1集群把75改成66) 交互式开发 执行器选Terminal 密码随便设一个(需记住) 工作空间:私有数据、全部文件 加速器选GeForce_RTX_2080_Ti

flume系列之:查看flume系统日志、查看统计flume日志类型、查看flume日志

遍历指定目录下多个文件查找指定内容 服务器系统日志会记录flume相关日志 cat /var/log/messages |grep -i oom 查找系统日志中关于flume的指定日志 import osdef search_string_in_files(directory, search_string):count = 0

hdu4267区间统计

题意:给一些数,有两种操作,一种是在[a,b] 区间内,对(i - a)% k == 0 的加value,另一种操作是询问某个位置的值。 import java.io.BufferedInputStream;import java.io.BufferedReader;import java.io.IOException;import java.io.InputStream;import

hdu4417区间统计

给你一个数列{An},然后有m次查询,每次查询一段区间 [l,r] <= h 的值的个数。 import java.io.BufferedInputStream;import java.io.BufferedReader;import java.io.IOException;import java.io.InputStream;import java.io.InputStreamRead

hdu3333区间统计

题目大意:求一个区间内不重复数字的和,例如1 1 1 3,区间[1,4]的和为4。 import java.io.BufferedInputStream;import java.io.BufferedReader;import java.io.IOException;import java.io.InputStream;import java.io.InputStreamReader;

实例:如何统计当前主机的连接状态和连接数

统计当前主机的连接状态和连接数 在 Linux 中,可使用 ss 命令来查看主机的网络连接状态。以下是统计当前主机连接状态和连接主机数量的具体操作。 1. 统计当前主机的连接状态 使用 ss 命令结合 grep、cut、sort 和 uniq 命令来统计当前主机的 TCP 连接状态。 ss -nta | grep -v '^State' | cut -d " " -f 1 | sort |

Python脚本:TXT文档行数统计

count = 0 #计数变量file_dirs = input('请输入您要统计的文件根路径:')filename = open(file_dirs,'r') #以只读方式打开文件file_contents = filename.read() #读取文档内容到file_contentsfor file_content in file_contents:

Linux命令(11):系统信息查看命令

系统 # uname -a # 查看内核/操作系统/CPU信息# head -n 1 /etc/issue # 查看操作系统版本# cat /proc/cpuinfo # 查看CPU信息# hostname # 查看计算机名# lspci -tv # 列出所有PCI设备# lsusb -tv