深度学习方法;乳腺癌分类

2024-04-06 05:36

本文主要是介绍深度学习方法;乳腺癌分类,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

乳腺癌的类型很多,但大多数常见的是浸润性导管癌、导管原位癌和浸润性小叶癌。浸润性导管癌(IDC)是最常见的乳腺癌类型。这些都是恶性肿瘤的亚型。大约80%的乳腺癌是浸润性导管癌(IDC),它起源于乳腺的乳管。

浸润性是指癌症已经“侵袭”或扩散到周围的乳房组织,而导管是指从乳管开始的癌症,乳管是将乳汁从产奶小叶输送到乳房乳头的“管道”。癌症是指任何始于覆盖组织或内脏皮肤的癌症,如乳房组织。

 计算机辅助的检测系统由预处理单元、特征提取、特征选择、分割和分类组成。每个阶段的输出作为后续步骤的输入。

肿瘤的形状是决定肿瘤性质的重要特征;因此,边缘分割是肿瘤分类的重要方法之一。边缘分割技术是基于纹理和基于区域的特征,即低层特征。

为了针对特定任务训练模型,我们需要大量的标记数据。有时,如此大量的训练数据会导致数据与模型的过度拟合。处理过拟合问题的解决方案是使用深度自动编码器的无监督学习,该深度自动编码器微调到特定的分类问题。

基于CNN的分类器

逻辑回归

它通常用于估计属于特定类别的对象的概率 \hat{p} 。如果一个类别的概率大于50%,则该对象属于该类别,否则在二进制类别分类的情况下它属于负类别。

输入特征的加权和,并且添加偏置项。但是并没有像线性回归一样直接输出

\hat{p}=\sigma (t)=\frac{1}{1+e^{-t}}

\hat{y}=\left\{\begin{matrix} 0, & if\: \hat{p}< 0.5\\ 1, & if\: \hat{p}\geq 0.5& \end{matrix}\right.

 随机森林

决策树分类器是一种简单、快速且基于规则的分类器,广泛用于分类。白盒机器学习方法,揭示了内部决策逻辑。它使用IF-THEN规则进行决策。

一旦构建了决策树,就可以使用它来对新数据进行分类和测试。它是整体模型中的基本单位。随机森林分类器是一种包含多个决策树分类器进行分类的集成分类技术。

随机选择多个决策树分类器,并根据大多数分类器来确定目标结果。

 支持向量机

通过使用具有大量边距的超平面来分隔数据点。它可以通过核技巧处理输入空间中的非线性。它找出了对数据点进行分类的最优超平面。超平面是(n-1)维的。

 与Logistic分类器不同,支持向量机分类器速度很快,因为它不计算每一类的概率。

AdaBoost分类器(自适应Boost)

Boost是一种集成方法,将几个弱学习者结合在一起,形成一个强学习者。这些弱学习者被称为预测器,预测器的数量是用户定义的,可能会根据问题的不同而变化。增强算法的主要思想是按顺序训练预测器。前一个预测器的输出充当当前预测器的输入。

 为了训练AdaBoost分类器,我们考虑具有m个对象的训练集,每个对象被称为示例,并且N表示取决于问题的性质和用户定义的预测器的数量,每个时刻w^{i}, i=1,2,3,\dots,m的权重初始设置为\frac{1}{m}。通过减小误差来获得第一个预测器的最优权重。第 j 个预测器的误差计算公式为:r_{j}=\frac{\sum ^{m}_{i=1}w^{i},(\hat{y}_{j}^{i}\neq y^{i})}{\sum ^{m}_{i=1}w^{i}}

预测器的第 j 个权重为:\alpha _{j}=\eta log(\frac{1-r_{j}}{r_{j}})\eta 指的是学习率

实例 i (i=1,2,3,\dots,m)的权重w^{i}

 设样本x的第 j 个预测器的预测类为k,即\hat{y}_{j}(x)=argmax(k)\sum ^{N}_{j=1, \hat{y}_{j}(x)=k}\: \alpha _{j}

Bagging 分类器

一种集成分类器,由用户决定的许多预测值组成。这些预测器使用相同的训练算法,但在训练数据集的不同随机子集上。选择训练数据集的不同随机子集的过程称为采样,以两种方式执行,有替换和无替换。未更换的采样称为粘贴,有更换的采样称为装袋。

对于相同的预测器,需要对训练实例进行多次采样,当所有Bagging预测器在训练数据集上训练时,通过简单地聚集所有预测器的预测来对测试数据进行预测。由于袋装分类器并行训练所有预测器,因此它比AdaBoost分类器花费的时间更少。

投票分类器

投票分类器也是集成分类器,其有两种类型:硬投票分类器;软投票分类器

在硬投票分类器中,考虑每个类别的大多数选票。而在软投票分类器中,将预测类别的大多数作为概率作为最终输出。

当投票分类器的所有分类器都是独立的时候,由于每个分类器使用不同的训练方法,因此可以得到更好的结果。

这篇关于深度学习方法;乳腺癌分类的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/879122

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

认识、理解、分类——acm之搜索

普通搜索方法有两种:1、广度优先搜索;2、深度优先搜索; 更多搜索方法: 3、双向广度优先搜索; 4、启发式搜索(包括A*算法等); 搜索通常会用到的知识点:状态压缩(位压缩,利用hash思想压缩)。

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

浅谈主机加固,六种有效的主机加固方法

在数字化时代,数据的价值不言而喻,但随之而来的安全威胁也日益严峻。从勒索病毒到内部泄露,企业的数据安全面临着前所未有的挑战。为了应对这些挑战,一种全新的主机加固解决方案应运而生。 MCK主机加固解决方案,采用先进的安全容器中间件技术,构建起一套内核级的纵深立体防护体系。这一体系突破了传统安全防护的局限,即使在管理员权限被恶意利用的情况下,也能确保服务器的安全稳定运行。 普适主机加固措施:

webm怎么转换成mp4?这几种方法超多人在用!

webm怎么转换成mp4?WebM作为一种新兴的视频编码格式,近年来逐渐进入大众视野,其背后承载着诸多优势,但同时也伴随着不容忽视的局限性,首要挑战在于其兼容性边界,尽管WebM已广泛适应于众多网站与软件平台,但在特定应用环境或老旧设备上,其兼容难题依旧凸显,为用户体验带来不便,再者,WebM格式的非普适性也体现在编辑流程上,由于它并非行业内的通用标准,编辑过程中可能会遭遇格式不兼容的障碍,导致操