CFI查询(四)

2024-04-06 05:08
文章标签 查询 cfi

本文主要是介绍CFI查询(四),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

读毛德操《嵌入式系统》读书笔记

接着上一篇

1、回到上一篇的cfi_probe_chip函数中

在发出两个命令后,就接连从闪存中读出三次,如果从每个芯片中读出的字节都依次为0x51、0x52和0x59,即“Q”“R”和“Y”,就表示对上号了,这说明在地址base处检测到了闪存芯片,而且确实是4片16位闪存芯片。

这个操作对应的函数是qry_present函数

/* check for QRY.
   in: interleave,type,mode
   ret: table index, <0 for error
 */
static inline int qry_present(struct map_info *map, __u32 base,
struct cfi_private *cfi)
{
int osf = cfi->interleave * cfi->device_type; // scale factor


if (cfi_read(map,base+osf*0x10)==cfi_build_cmd('Q',map,cfi) &&
   cfi_read(map,base+osf*0x11)==cfi_build_cmd('R',map,cfi) &&
   cfi_read(map,base+osf*0x12)==cfi_build_cmd('Y',map,cfi))

return 1; // ok !


return 0; // nothing found
}

注:如果对不上号,那就换一种假设,这是在函数genprobe_new_chip中做的工作,这个函数已经在第二篇中讲了,可以退回去查看。

2、现在已经检测到了闪存芯片,并且已经开始查询流程,接着就要把芯片中的CFI信息块读出来

我们回到cfi_probe_chip函数的代码中:
static int cfi_probe_chip(struct map_info *map, __u32 base,
 struct flchip *chips, struct cfi_private *cfi)
{
int i;

if ((base + 0) >= map->size) {
printk(KERN_NOTICE
"Probe at base[0x00](0x%08lx) past the end of the map(0x%08lx)\n",
(unsigned long)base, map->size -1);
return 0;
}
if ((base + 0xff) >= map->size) {
printk(KERN_NOTICE
"Probe at base[0x55](0x%08lx) past the end of the map(0x%08lx)\n",
(unsigned long)base + 0x55, map->size -1);
return 0;
}
cfi_send_gen_cmd(0xF0, 0, base, map, cfi, cfi->device_type, NULL);
cfi_send_gen_cmd(0x98, 0x55, base, map, cfi, cfi->device_type, NULL);


if (!qry_present(map,base,cfi))
return 0;

  上一篇和这一篇开始讲的内容,不再重复。


if (!cfi->numchips) {
/* This is the first time we're called. Set up the CFI 
  stuff accordingly and return */
return cfi_chip_setup(map, cfi);

此函数把芯片中的信息块读出来,函数源码如下

static int cfi_chip_setup(struct map_info *map, 
  struct cfi_private *cfi)
{
int ofs_factor = cfi->interleave*cfi->device_type;
__u32 base = 0;
int num_erase_regions = cfi_read_query(map, base + (0x10 + 28)*ofs_factor);
int i;


#ifdef DEBUG_CFI
printk("Number of erase regions: %d\n", num_erase_regions);
#endif
if (!num_erase_regions)
return 0;


cfi->cfiq = kmalloc(sizeof(struct cfi_ident) + num_erase_regions * 4, GFP_KERNEL);
if (!cfi->cfiq) {
printk(KERN_WARNING "%s: kmalloc failed for CFI ident structure\n", map->name);
return 0;
}

memset(cfi->cfiq,0,sizeof(struct cfi_ident));

cfi->cfi_mode = CFI_MODE_CFI;
cfi->fast_prog=1; /* CFI supports fast programming */

/* Read the CFI info structure */
for (i=0; i<(sizeof(struct cfi_ident) + num_erase_regions * 4); i++) {
((unsigned char *)cfi->cfiq)[i] = cfi_read_query(map,base + (0x10 + i)*ofs_factor);
}

/* Do any necessary byteswapping */
cfi->cfiq->P_ID = le16_to_cpu(cfi->cfiq->P_ID);

cfi->cfiq->P_ADR = le16_to_cpu(cfi->cfiq->P_ADR);
cfi->cfiq->A_ID = le16_to_cpu(cfi->cfiq->A_ID);
cfi->cfiq->A_ADR = le16_to_cpu(cfi->cfiq->A_ADR);
cfi->cfiq->InterfaceDesc = le16_to_cpu(cfi->cfiq->InterfaceDesc);
cfi->cfiq->MaxBufWriteSize = le16_to_cpu(cfi->cfiq->MaxBufWriteSize);



#ifdef DEBUG_CFI
/* Dump the information therein */
print_cfi_ident(cfi->cfiq);
#endif


for (i=0; i<cfi->cfiq->NumEraseRegions; i++) {
cfi->cfiq->EraseRegionInfo[i] = le32_to_cpu(cfi->cfiq->EraseRegionInfo[i]);

#ifdef DEBUG_CFI
printk("  Erase Region #%d: BlockSize 0x%4.4X bytes, %d blocks\n",
      i, (cfi->cfiq->EraseRegionInfo[i] >> 8) & ~0xff, 
      (cfi->cfiq->EraseRegionInfo[i] & 0xffff) + 1);
#endif
}
/* Put it back into Read Mode */
cfi_send_gen_cmd(0xF0, 0, base, map, cfi, cfi->device_type, NULL);


return 1;
}

如前所述,CFI规定了对芯片的品种、规格和各种参数进行查询的流程,以及芯片在受到查询时提供的数据结构。CFI规定,芯片在受到查询时,CPU可以从芯片上的单元地址0x10开始读回一个信息块,其开头是一个数据结构,如下所示:


/* NB: We keep these structures in memory in HOST byteorder, except
 * where individually noted.
 */


/* Basic Query Structure */
struct cfi_ident {
  __u8  qry[3];
  __u16 P_ID; 主
  __u16 P_ADR;
  __u16 A_ID; 次
  __u16 A_ADR;
  __u8  VccMin;
  __u8  VccMax;
  __u8  VppMin;
  __u8  VppMax;电源有关

  __u8  WordWriteTimeoutTyp;
  __u8  BufWriteTimeoutTyp;
  __u8  BlockEraseTimeoutTyp;
  __u8  ChipEraseTimeoutTyp;
  __u8  WordWriteTimeoutMax;
  __u8  BufWriteTimeoutMax;
  __u8  BlockEraseTimeoutMax;
  __u8  ChipEraseTimeoutMax;

芯片进行这些操作时都有超时不能完成的可能,因此这些是,芯片相应操作的超时的典型值和最大值
  __u8  DevSize;芯片大小,以2为底的指数
  __u16 InterfaceDesc;数据宽度
  __u16 MaxBufWriteSize;芯片上写缓冲的大小,以2为底的指数
  __u8  NumEraseRegions;芯片上擦除区间的数量
  __u32 EraseRegionInfo[0]; /* Not host ordered */


} __attribute__((packed));

}


/* Check each previous chip to see if it's an alias */
for (i=0; i<cfi->numchips; i++) {
/* This chip should be in read mode if it's one
  we've already touched. */
if (qry_present(map,chips[i].start,cfi)) {
/* Eep. This chip also had the QRY marker. 
* Is it an alias for the new one? */
cfi_send_gen_cmd(0xF0, 0, chips[i].start, map, cfi, cfi->device_type, NULL);


/* If the QRY marker goes away, it's an alias */
if (!qry_present(map, chips[i].start, cfi)) {
printk(KERN_DEBUG "%s: Found an alias at 0x%x for the chip at 0x%lx\n",
      map->name, base, chips[i].start);
return 0;
}
/* Yes, it's actually got QRY for data. Most 
* unfortunate. Stick the new chip in read mode
* too and if it's the same, assume it's an alias. */
/* FIXME: Use other modes to do a proper check */
cfi_send_gen_cmd(0xF0, 0, base, map, cfi, cfi->device_type, NULL);

if (qry_present(map, base, cfi)) {
printk(KERN_DEBUG "%s: Found an alias at 0x%x for the chip at 0x%lx\n",
      map->name, base, chips[i].start);
return 0;
}
}
}

/* OK, if we got to here, then none of the previous chips appear to
  be aliases for the current one. */
if (cfi->numchips == MAX_CFI_CHIPS) {
printk(KERN_WARNING"%s: Too many flash chips detected. Increase MAX_CFI_CHIPS from %d.\n", map->name, MAX_CFI_CHIPS);
/* Doesn't matter about resetting it to Read Mode - we're not going to talk to it anyway */
return -1;
}
chips[cfi->numchips].start = base;
chips[cfi->numchips].state = FL_READY;
cfi->numchips++;

/* Put it back into Read Mode */
cfi_send_gen_cmd(0xF0, 0, base, map, cfi, cfi->device_type, NULL);


printk(KERN_INFO "%s: Found %d x%d devices at 0x%x in %d-bit mode\n",
      map->name, cfi->interleave, cfi->device_type*8, base,
      map->buswidth*8);

return 1;
}

3、在CFI信息块中,一方面要说明所支持的是哪一种规程,另一方面还要指明这个信息块的位置。CFI允许提供主、次两种操作规程。


下一篇再说,如何查询主、从算法。


这篇关于CFI查询(四)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/879070

相关文章

浅谈mysql的sql_mode可能会限制你的查询

《浅谈mysql的sql_mode可能会限制你的查询》本文主要介绍了浅谈mysql的sql_mode可能会限制你的查询,这个问题主要说明的是,我们写的sql查询语句违背了聚合函数groupby的规则... 目录场景:问题描述原因分析:解决方案:第一种:修改后,只有当前生效,若是mysql服务重启,就会失效;

MySQL多列IN查询的实现

《MySQL多列IN查询的实现》多列IN查询是一种强大的筛选工具,它允许通过多字段组合快速过滤数据,本文主要介绍了MySQL多列IN查询的实现,具有一定的参考价值,感兴趣的可以了解一下... 目录一、基础语法:多列 IN 的两种写法1. 直接值列表2. 子查询二、对比传统 OR 的写法三、性能分析与优化1.

mybatis-plus 实现查询表名动态修改的示例代码

《mybatis-plus实现查询表名动态修改的示例代码》通过MyBatis-Plus实现表名的动态替换,根据配置或入参选择不同的表,本文主要介绍了mybatis-plus实现查询表名动态修改的示... 目录实现数据库初始化依赖包配置读取类设置 myBATis-plus 插件测试通过 mybatis-plu

MySQL中实现多表查询的操作方法(配sql+实操图+案例巩固 通俗易懂版)

《MySQL中实现多表查询的操作方法(配sql+实操图+案例巩固通俗易懂版)》本文主要讲解了MySQL中的多表查询,包括子查询、笛卡尔积、自连接、多表查询的实现方法以及多列子查询等,通过实际例子和操... 目录复合查询1. 回顾查询基本操作group by 分组having1. 显示部门号为10的部门名,员

mysql关联查询速度慢的问题及解决

《mysql关联查询速度慢的问题及解决》:本文主要介绍mysql关联查询速度慢的问题及解决方案,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录mysql关联查询速度慢1. 记录原因1.1 在一次线上的服务中1.2 最终发现2. 解决方案3. 具体操作总结mysql

mysql线上查询之前要性能调优的技巧及示例

《mysql线上查询之前要性能调优的技巧及示例》文章介绍了查询优化的几种方法,包括使用索引、避免不必要的列和行、有效的JOIN策略、子查询和派生表的优化、查询提示和优化器提示等,这些方法可以帮助提高数... 目录避免不必要的列和行使用有效的JOIN策略使用子查询和派生表时要小心使用查询提示和优化器提示其他常

SQL 中多表查询的常见连接方式详解

《SQL中多表查询的常见连接方式详解》本文介绍SQL中多表查询的常见连接方式,包括内连接(INNERJOIN)、左连接(LEFTJOIN)、右连接(RIGHTJOIN)、全外连接(FULLOUTER... 目录一、连接类型图表(ASCII 形式)二、前置代码(创建示例表)三、连接方式代码示例1. 内连接(I

轻松上手MYSQL之JSON函数实现高效数据查询与操作

《轻松上手MYSQL之JSON函数实现高效数据查询与操作》:本文主要介绍轻松上手MYSQL之JSON函数实现高效数据查询与操作的相关资料,MySQL提供了多个JSON函数,用于处理和查询JSON数... 目录一、jsON_EXTRACT 提取指定数据二、JSON_UNQUOTE 取消双引号三、JSON_KE

查询SQL Server数据库服务器IP地址的多种有效方法

《查询SQLServer数据库服务器IP地址的多种有效方法》作为数据库管理员或开发人员,了解如何查询SQLServer数据库服务器的IP地址是一项重要技能,本文将介绍几种简单而有效的方法,帮助你轻松... 目录使用T-SQL查询方法1:使用系统函数方法2:使用系统视图使用SQL Server Configu

MYSQL关联关系查询方式

《MYSQL关联关系查询方式》文章详细介绍了MySQL中如何使用内连接和左外连接进行表的关联查询,并展示了如何选择列和使用别名,文章还提供了一些关于查询优化的建议,并鼓励读者参考和支持脚本之家... 目录mysql关联关系查询关联关系查询这个查询做了以下几件事MySQL自关联查询总结MYSQL关联关系查询