CFI查询(三)

2024-04-06 05:08
文章标签 查询 cfi

本文主要是介绍CFI查询(三),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1、上一篇通过结构体

static struct chip_probe cfi_chip_probe = {
name: "CFI",
probe_chip: cfi_probe_chip
};

了解到,主要的查询工作要靠probe_chip: cfi_probe_chip函数完成。

其源码如下:

static int cfi_probe_chip(struct map_info *map, __u32 base,
 struct flchip *chips, struct cfi_private *cfi)

这是在上一篇中,调用次函数的情景:

cp->probe_chip(map, 0, NULL, cfi),对比应该能得出对应的参数了。

{
int i;

if ((base + 0) >= map->size) {
printk(KERN_NOTICE
"Probe at base[0x00](0x%08lx) past the end of the map(0x%08lx)\n",
(unsigned long)base, map->size -1);
return 0;
}
if ((base + 0xff) >= map->size) {
printk(KERN_NOTICE
"Probe at base[0x55](0x%08lx) past the end of the map(0x%08lx)\n",
(unsigned long)base + 0x55, map->size -1);
return 0;
}
cfi_send_gen_cmd(0xF0, 0, base, map, cfi, cfi->device_type, NULL);
cfi_send_gen_cmd(0x98, 0x55, base, map, cfi, cfi->device_type, NULL);

向闪存芯片发送两条命令,如下表所示


第一条命令是0xf0是芯片进入随机读取状态。

第二条命令是0x98是芯片开始一个CFI查询流程。

函数cfi_send_gen_cmd函数源码如下:

/*
 * Sends a CFI command to a bank of flash for the given geometry.
 *
 * Returns the offset in flash where the command was written.
 * If prev_val is non-null, it will be set to the value at the command address,
 * before the command was written.
 */
static inline __u32 cfi_send_gen_cmd(u_char cmd, __u32 cmd_addr, __u32 base,
struct map_info *map, struct cfi_private *cfi,
int type, cfi_word *prev_val)
{
cfi_word val;
__u32 addr = base +
cfi_build_cmd_addr(cmd_addr, CFIDEV_INTERLEAVE, type);地址换算

val =
cfi_build_cmd(cmd, map, cfi);命令调整

        这两个函数根据具体的芯片格局对地址和命令作出换算和调整。

这是cfi_build_cmd_addr函数源码:

/*
 * Returns the command address according to the given geometry.
 */
static inline __u32 cfi_build_cmd_addr(__u32 cmd_ofs, int interleave, int type)
{
return (cmd_ofs * type) * interleave;
}


这是cfi_build_cmd函数源码:

在有多个芯片并列时,对芯片的命令要写入到并列的每一个芯片中,所以需要根据具体的情况将命令重复几次。CFI规定16位和32位数据均采用“小端”格式,而有些CPU采用“大端”格式,所以要通过函数cpu_to_cfi32转化。如果CPU本就是“小端”,则本函数为空。
/*
 * Transforms the CFI command for the given geometry (bus width & interleave.
 */
static inline cfi_word cfi_build_cmd(u_char cmd, struct map_info *map, struct cfi_private *cfi)
{
cfi_word val = 0;


if (cfi_buswidth_is_1()) {
/* 1 x8 device */
val = cmd;
} else if (cfi_buswidth_is_2()) {
if (cfi_interleave_is_1()) {
/* 1 x16 device in x16 mode */
val = cpu_to_cfi16(cmd);
} else if (cfi_interleave_is_2()) {
/* 2 (x8, x16 or x32) devices in x8 mode */
val = cpu_to_cfi16((cmd << 8) | cmd);
}
} else if (cfi_buswidth_is_4()) {
if (cfi_interleave_is_1()) {
/* 1 x32 device in x32 mode */
val = cpu_to_cfi32(cmd);
} else if (cfi_interleave_is_2()) {
/* 2 x16 device in x16 mode */
val = cpu_to_cfi32((cmd << 16) | cmd);
} else if (cfi_interleave_is_4()) {
/* 4 (x8, x16 or x32) devices in x8 mode */
val = (cmd << 16) | cmd;
val = cpu_to_cfi32((val << 8) | val);
}
#ifdef CFI_WORD_64
} else if (cfi_buswidth_is_8()) {
if (cfi_interleave_is_1()) {
/* 1 x64 device in x64 mode */
val = cpu_to_cfi64(cmd);
} else if (cfi_interleave_is_2()) {
/* 2 x32 device in x32 mode */
val = cmd;
val = cpu_to_cfi64((val << 32) | val);
} else if (cfi_interleave_is_4()) {
/* 4 (x16, x32 or x64) devices in x16 mode */
val = (cmd << 16) | cmd;
val = cpu_to_cfi64((val << 32) | val);
} else if (cfi_interleave_is_8()) {
/* 8 (x8, x16 or x32) devices in x8 mode */
val = (cmd << 8) | cmd;
val = (val << 16) | val;
val = (val << 32) | val;
val = cpu_to_cfi64(val);
}
#endif /* CFI_WORD_64 */
}
return val;
}

if (prev_val)
*prev_val = cfi_read(map, addr);

cfi_write(map, val, addr);

return addr - base;
}

注:CFI查询中所用的地址都是以芯片本身的存储单元为单位的,而CPU使用的32位地址则是字节地址,所以要根据芯片的宽度加以换算。当采用多个芯片并列时实际上相当于改变了芯片宽度,因此需要进一步加以换算。


/*
 * Read a value according to the bus width.
 */


static inline cfi_word cfi_read(struct map_info *map, __u32 addr)
{
if (cfi_buswidth_is_1()) {
return map->read8(map, addr);
} else if (cfi_buswidth_is_2()) {
return map->read16(map, addr);
} else if (cfi_buswidth_is_4()) {
return map->read32(map, addr);
} else if (cfi_buswidth_is_8()) {
return map->read64(map, addr);
} else {
return 0;
}
}

此函数从目标地址中读出数据,具体的调用那个函数取决于数据宽度和map_info结构中的函数指针。

cfi_write也类似。
/*
 * Write a value according to the bus width.
 */

static inline void cfi_write(struct map_info *map, cfi_word val, __u32 addr)
{
if (cfi_buswidth_is_1()) {
map->write8(map, val, addr);
} else if (cfi_buswidth_is_2()) {
map->write16(map, val, addr);
} else if (cfi_buswidth_is_4()) {
map->write32(map, val, addr);
} else if (cfi_buswidth_is_8()) {
map->write64(map, val, addr);
}
}





if (!qry_present(map,base,cfi))
return 0;


if (!cfi->numchips) {
/* This is the first time we're called. Set up the CFI 
  stuff accordingly and return */
return cfi_chip_setup(map, cfi);
}


/* Check each previous chip to see if it's an alias */
for (i=0; i<cfi->numchips; i++) {
/* This chip should be in read mode if it's one
  we've already touched. */
if (qry_present(map,chips[i].start,cfi)) {
/* Eep. This chip also had the QRY marker. 
* Is it an alias for the new one? */
cfi_send_gen_cmd(0xF0, 0, chips[i].start, map, cfi, cfi->device_type, NULL);


/* If the QRY marker goes away, it's an alias */
if (!qry_present(map, chips[i].start, cfi)) {
printk(KERN_DEBUG "%s: Found an alias at 0x%x for the chip at 0x%lx\n",
      map->name, base, chips[i].start);
return 0;
}
/* Yes, it's actually got QRY for data. Most 
* unfortunate. Stick the new chip in read mode
* too and if it's the same, assume it's an alias. */
/* FIXME: Use other modes to do a proper check */
cfi_send_gen_cmd(0xF0, 0, base, map, cfi, cfi->device_type, NULL);

if (qry_present(map, base, cfi)) {
printk(KERN_DEBUG "%s: Found an alias at 0x%x for the chip at 0x%lx\n",
      map->name, base, chips[i].start);
return 0;
}
}
}

/* OK, if we got to here, then none of the previous chips appear to
  be aliases for the current one. */
if (cfi->numchips == MAX_CFI_CHIPS) {
printk(KERN_WARNING"%s: Too many flash chips detected. Increase MAX_CFI_CHIPS from %d.\n", map->name, MAX_CFI_CHIPS);
/* Doesn't matter about resetting it to Read Mode - we're not going to talk to it anyway */
return -1;
}
chips[cfi->numchips].start = base;
chips[cfi->numchips].state = FL_READY;
cfi->numchips++;

/* Put it back into Read Mode */
cfi_send_gen_cmd(0xF0, 0, base, map, cfi, cfi->device_type, NULL);


printk(KERN_INFO "%s: Found %d x%d devices at 0x%x in %d-bit mode\n",
      map->name, cfi->interleave, cfi->device_type*8, base,
      map->buswidth*8);

return 1;
}

下一篇接着说:

这篇关于CFI查询(三)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/879069

相关文章

Java实现复杂查询优化的7个技巧小结

《Java实现复杂查询优化的7个技巧小结》在Java项目中,复杂查询是开发者面临的“硬骨头”,本文将通过7个实战技巧,结合代码示例和性能对比,手把手教你如何让复杂查询变得优雅,大家可以根据需求进行选择... 目录一、复杂查询的痛点:为何你的代码“又臭又长”1.1冗余变量与中间状态1.2重复查询与性能陷阱1.

MySQL中查询和展示LONGBLOB类型数据的技巧总结

《MySQL中查询和展示LONGBLOB类型数据的技巧总结》在MySQL中LONGBLOB是一种二进制大对象(BLOB)数据类型,用于存储大量的二进制数据,:本文主要介绍MySQL中查询和展示LO... 目录前言1. 查询 LONGBLOB 数据的大小2. 查询并展示 LONGBLOB 数据2.1 转换为十

使用SpringBoot+InfluxDB实现高效数据存储与查询

《使用SpringBoot+InfluxDB实现高效数据存储与查询》InfluxDB是一个开源的时间序列数据库,特别适合处理带有时间戳的监控数据、指标数据等,下面详细介绍如何在SpringBoot项目... 目录1、项目介绍2、 InfluxDB 介绍3、Spring Boot 配置 InfluxDB4、I

Go语言使用Gin处理路由参数和查询参数

《Go语言使用Gin处理路由参数和查询参数》在WebAPI开发中,处理路由参数(PathParameter)和查询参数(QueryParameter)是非常常见的需求,下面我们就来看看Go语言... 目录一、路由参数 vs 查询参数二、Gin 获取路由参数和查询参数三、示例代码四、运行与测试1. 测试编程路

MySQL 数据库表与查询操作实战案例

《MySQL数据库表与查询操作实战案例》本文将通过实际案例,详细介绍MySQL中数据库表的设计、数据插入以及常用的查询操作,帮助初学者快速上手,感兴趣的朋友跟随小编一起看看吧... 目录mysql 数据库表操作与查询实战案例项目一:产品相关数据库设计与创建一、数据库及表结构设计二、数据库与表的创建项目二:员

Linux查询服务器 IP 地址的命令详解

《Linux查询服务器IP地址的命令详解》在服务器管理和网络运维中,快速准确地获取服务器的IP地址是一项基本但至关重要的技能,下面我们来看看Linux中查询服务器IP的相关命令使用吧... 目录一、hostname 命令:简单高效的 IP 查询工具命令详解实际应用技巧注意事项二、ip 命令:新一代网络配置全

Linux查询服务器系统版本号的多种方法

《Linux查询服务器系统版本号的多种方法》在Linux系统管理和维护工作中,了解当前操作系统的版本信息是最基础也是最重要的操作之一,系统版本不仅关系到软件兼容性、安全更新策略,还直接影响到故障排查和... 目录一、引言:系统版本查询的重要性二、基础命令解析:cat /etc/Centos-release详

MySQL慢查询工具的使用小结

《MySQL慢查询工具的使用小结》使用MySQL的慢查询工具可以帮助开发者识别和优化性能不佳的SQL查询,本文就来介绍一下MySQL的慢查询工具,具有一定的参考价值,感兴趣的可以了解一下... 目录一、启用慢查询日志1.1 编辑mysql配置文件1.2 重启MySQL服务二、配置动态参数(可选)三、分析慢查

MyBatis流式查询两种实现方式

《MyBatis流式查询两种实现方式》本文详解MyBatis流式查询,通过ResultHandler和Cursor实现边读边处理,避免内存溢出,ResultHandler逐条回调,Cursor支持迭代... 目录MyBATis 流式查询详解:ResultHandler 与 Cursor1. 什么是流式查询?

Java慢查询排查与性能调优完整实战指南

《Java慢查询排查与性能调优完整实战指南》Java调优是一个广泛的话题,它涵盖了代码优化、内存管理、并发处理等多个方面,:本文主要介绍Java慢查询排查与性能调优的相关资料,文中通过代码介绍的非... 目录1. 事故全景:从告警到定位1.1 事故时间线1.2 关键指标异常1.3 排查工具链2. 深度剖析: