序列化案例实操(统计每一个手机号耗费的总上行流量、总下行流量、总流量)

本文主要是介绍序列化案例实操(统计每一个手机号耗费的总上行流量、总下行流量、总流量),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 序列化概述
  • 自定义bean对象实现序列化接口(Writable)
  • 案例需求
  • 编写MapReduce程序
  • 运行结果


序列化概述

序列化就是把内存中的对象,转换成字节序列(或其他数据传输协议)以便于存储到磁盘(持久化)和网络传输。
反序列化就是将收到字节序列(或其他数据传输协议)或者是磁盘的持久化数据,转换成内存中的对象。

自定义bean对象实现序列化接口(Writable)

在企业开发中往往常用的基本序列化类型不能满足所有需求,比如在Hadoop框架内部传递一个bean对象,那么该对象就需要实现序列化接口。
具体实现bean对象序列化步骤如下7步:
(1)必须实现Writable接口
(2)反序列化时,需要反射调用空参构造函数,所以必须有空参构造

public FlowBean() {super();
}

(3)重写序列化方法

@Override
public void write(DataOutput out) throws IOException {out.writeLong(upFlow);out.writeLong(downFlow);out.writeLong(sumFlow);
}

(4)重写反序列化方法

@Override
public void readFields(DataInput in) throws IOException {upFlow = in.readLong();downFlow = in.readLong();sumFlow = in.readLong();
}

(5)注意反序列化的顺序和序列化的顺序完全一致
(6)要想把结果显示在文件中,需要重写toString(),可用"\t"分开,方便后续用。
(7)如果需要将自定义的bean放在key中传输,则还需要实现Comparable接口,因为MapReduce框中的Shuffle过程要求对key必须能排序。

@Override
public int compareTo(FlowBean o) {// 倒序排列,从大到小return this.sumFlow > o.getSumFlow() ? -1 : 1;
}

案例需求

统计每一个手机号耗费的总上行流量、总下行流量、总流量
输入总数据:
在这里插入图片描述
输入数据格式:
7 13560436666 120.196.100.99 1116 954 200
id 手机号码 网络ip 上行流量 下行流量 网络状态码
期望输出数据格式:
13560436666 1116 954 2070
手机号码 上行流量 下行流量 总流量

编写MapReduce程序

在这里插入图片描述
FlowBean:

package com.atxiaoyu.xuliehua;import org.apache.hadoop.io.Writable;import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;public class FlowBean implements Writable {private long upFlow; //上行流量private long downFlow; //下行流量private long sumFlow; //总流量//空参构造public FlowBean() {}public long getUpFlow() {return upFlow;}public void setUpFlow(long upFlow) {this.upFlow = upFlow;}public long getDownFlow() {return downFlow;}public void setDownFlow(long downFlow) {this.downFlow = downFlow;}public long getSumFlow() {return sumFlow;}public void setSumFlow(long sumFlow) {this.sumFlow = sumFlow;}public void setSumFlow() {this.sumFlow = this.upFlow+this.downFlow;}@Overridepublic void write(DataOutput out) throws IOException {out.writeLong(upFlow);out.writeLong(downFlow);out.writeLong(sumFlow);}@Overridepublic void readFields(DataInput in) throws IOException {this.upFlow=in.readLong();this.downFlow=in.readLong();this.sumFlow=in.readLong();}@Overridepublic String toString() {return upFlow+"\t"+downFlow+"\t"+sumFlow;}
}

FlowMapper:

package com.atxiaoyu.xuliehua;import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;import java.io.IOException;public class FlowMapper extends Mapper<LongWritable, Text,Text,FlowBean> {private  Text outK=new Text();private  FlowBean outV=new FlowBean();@Overrideprotected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {// 获取一行String line=value.toString();//切割String[] split=line.split("\t");//抓取想要的数据String phone=split[1];String up=split[split.length-3]; //上行流量String down=split[split.length-2]; //下行流量//封装outK.set(phone);outV.setUpFlow(Long.parseLong(up));outV.setDownFlow(Long.parseLong(down));outV.setSumFlow();// 写出context.write(outK,outV);}
}

FlowReducer:

package com.atxiaoyu.xuliehua;import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;import java.io.IOException;public class FlowReducer extends Reducer<Text,FlowBean,Text,FlowBean> {private  FlowBean outV=new FlowBean();@Overrideprotected void reduce(Text key, Iterable<FlowBean> values, Context context) throws IOException, InterruptedException {//遍历集合累加值long totalUp=0;long totalDown=0;for (FlowBean value : values) {totalUp=totalUp+value.getUpFlow();totalDown=totalUp+value.getDownFlow();//封装outK,outVoutV.setUpFlow(totalUp);outV.setDownFlow(totalDown);outV.setSumFlow();//写出context.write(key,outV);}}
}

FlowDriver:

package com.atxiaoyu.xuliehua;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.kerby.config.Conf;import java.io.IOException;public class FlowDriver {public static void main(String[] args) throws InterruptedException, IOException, ClassNotFoundException {Configuration conf = new Configuration();//1 获取jobJob job = Job.getInstance(conf);//2 设置jar包路径job.setJarByClass(FlowDriver.class);// 3 管理mapper和reducerjob.setMapperClass(FlowMapper.class);job.setReducerClass(FlowReducer.class);// 4 设置map输出的kv类型job.setMapOutputKeyClass(Text.class);job.setMapOutputValueClass(FlowBean.class);//5 设置最终输出的kv类型job.setOutputKeyClass(Text.class);job.setOutputValueClass(FlowBean.class);//6 设置输入路径和输出路径FileInputFormat.setInputPaths(job, new Path("D:\\input"));FileOutputFormat.setOutputPath(job, new Path("D:\\output"));//7 提交jobboolean result = job.waitForCompletion(true);System.exit(result ? 0 : 1);}
}

运行结果

在这里插入图片描述

在这里插入图片描述
与我们设想的输出结果一致。

这篇关于序列化案例实操(统计每一个手机号耗费的总上行流量、总下行流量、总流量)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/878692

相关文章

Nginx如何进行流量按比例转发

《Nginx如何进行流量按比例转发》Nginx可以借助split_clients指令或通过weight参数以及Lua脚本实现流量按比例转发,下面小编就为大家介绍一下两种方式具体的操作步骤吧... 目录方式一:借助split_clients指令1. 配置split_clients2. 配置后端服务器组3. 配

Java中使用注解校验手机号格式的详细指南

《Java中使用注解校验手机号格式的详细指南》在现代的Web应用开发中,数据校验是一个非常重要的环节,本文将详细介绍如何在Java中使用注解对手机号格式进行校验,感兴趣的小伙伴可以了解下... 目录1. 引言2. 数据校验的重要性3. Java中的数据校验框架4. 使用注解校验手机号格式4.1 @NotBl

Python爬虫selenium验证之中文识别点选+图片验证码案例(最新推荐)

《Python爬虫selenium验证之中文识别点选+图片验证码案例(最新推荐)》本文介绍了如何使用Python和Selenium结合ddddocr库实现图片验证码的识别和点击功能,感兴趣的朋友一起看... 目录1.获取图片2.目标识别3.背景坐标识别3.1 ddddocr3.2 打码平台4.坐标点击5.图

使用Navicat工具比对两个数据库所有表结构的差异案例详解

《使用Navicat工具比对两个数据库所有表结构的差异案例详解》:本文主要介绍如何使用Navicat工具对比两个数据库test_old和test_new,并生成相应的DDLSQL语句,以便将te... 目录概要案例一、如图两个数据库test_old和test_new进行比较:二、开始比较总结概要公司存在多

SpringBoot实现动态插拔的AOP的完整案例

《SpringBoot实现动态插拔的AOP的完整案例》在现代软件开发中,面向切面编程(AOP)是一种非常重要的技术,能够有效实现日志记录、安全控制、性能监控等横切关注点的分离,在传统的AOP实现中,切... 目录引言一、AOP 概述1.1 什么是 AOP1.2 AOP 的典型应用场景1.3 为什么需要动态插

Golang操作DuckDB实战案例分享

《Golang操作DuckDB实战案例分享》DuckDB是一个嵌入式SQL数据库引擎,它与众所周知的SQLite非常相似,但它是为olap风格的工作负载设计的,DuckDB支持各种数据类型和SQL特性... 目录DuckDB的主要优点环境准备初始化表和数据查询单行或多行错误处理和事务完整代码最后总结Duck

使用zabbix进行监控网络设备流量

《使用zabbix进行监控网络设备流量》这篇文章主要为大家详细介绍了如何使用zabbix进行监控网络设备流量,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录安装zabbix配置ENSP环境配置zabbix实行监控交换机测试一台liunx服务器,这里使用的为Ubuntu22.04(

MySQL不使用子查询的原因及优化案例

《MySQL不使用子查询的原因及优化案例》对于mysql,不推荐使用子查询,效率太差,执行子查询时,MYSQL需要创建临时表,查询完毕后再删除这些临时表,所以,子查询的速度会受到一定的影响,本文给大家... 目录不推荐使用子查询和JOIN的原因解决方案优化案例案例1:查询所有有库存的商品信息案例2:使用EX

opencv实现像素统计的示例代码

《opencv实现像素统计的示例代码》本文介绍了OpenCV中统计图像像素信息的常用方法和函数,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 统计像素值的基本信息2. 统计像素值的直方图3. 统计像素值的总和4. 统计非零像素的数量

如何使用 Bash 脚本中的time命令来统计命令执行时间(中英双语)

《如何使用Bash脚本中的time命令来统计命令执行时间(中英双语)》本文介绍了如何在Bash脚本中使用`time`命令来测量命令执行时间,包括`real`、`user`和`sys`三个时间指标,... 使用 Bash 脚本中的 time 命令来统计命令执行时间在日常的开发和运维过程中,性能监控和优化是不