Python人工智能应用---中文分词词频统计

2024-04-05 06:44

本文主要是介绍Python人工智能应用---中文分词词频统计,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

1.中文分词

2.循环分别处理列表

(1)分析

(2)代码解决

3.词袋模型的构建

(1)分析需求

(2)处理分析

1.先实现字符串的连接

2.字符串放到新的列表里面

4.提取高频词语

(1)STEP1. 导入模块

(2)STEP2. 创建CountVectorizer对象

(3)STEP3. 使用fit_transform()函数构造词袋模型

(4)STEP4. 使用get_feature_names()提取关键词


1.中文分词

jieba模块是处理中文分词还不错的一种方法,我们需要在自己的终端进行导入;

jieba模块里面含有许多的函数,我们使用lcut()函数,这个函数的参数就是我们要处理的文本内容,把字符串传进去以后,函数会返回列表;

分词上面的英文是jieba模块创建分词模型的过程,

模型创建成功之后,就会以列表的形式返回

2.循环分别处理列表

(1)分析

我们前面已经把评价的内容以列表的形式放到了data这个变量里面,我们进行中文分词的时候,需要取出每个评论进行分词统计,而评论是data里面的小列表的第一个元素,我们可以使用for循环,对里面的每个列表的第一个元素---评论进行分词处理;

(2)代码解决

 这个地方文件打开的时候会遇到各种问题,我们可以查阅资料解决,例如编码的方式,范围,忽略,转义字符等等;

open里面的文件路径一定是自己的电脑的文件路径,不可以直接进行复制;

# 导入csv模块
import csv# 使用open()函数打开数据集
file = open("C:\\Users\\32585\\Desktop\\yequ\\TVComments.csv","r",encoding='gb18030',errors="ignore")
# 使用csv.reader()函数读取数据集
reader = csv.reader(file)# 创建一个空列表data
data = []# 使用for循环遍历reader,将遍历的数据存储到变量info中
for info in reader:# 使用append()函数,将info逐一添加到data列表中data.append(info)# TODO 导入jieba模块
import jieba# TODO 使用for循环遍历data列表
for row in data:# TODO 获取具体的评价内容,并赋值给变量texttext=row[0]# TODO 使用jieba.lcut()将text进行分词,并把结果赋值给retret=jieba.lcut(text)# 输出ret进行查看print(ret)

因为文件容量比较大,所以生成的分词比较多,如图所示:

3.词袋模型的构建

(1)分析需求

经过jieba,lcut函数的处理之后,就生成了一系列的字符串列表:有多少条评论,就会生成多少条评论,但是我们后续的词袋模型只能传进去一个字符串,所以我们要把生成的诸多字符串转换成一个字符串;

(2)处理分析

我们的解决方案就是把每个列表里面的字符串使用空格进行合并,添加到一个新的列表里面;

下面是具体的实现:

1.先实现字符串的连接

把小的列表里面的内容使用空格合并成为一个字符串,我们这里可以使用join()函数:

按照上面的示例,在这个题上面,具体的代码就只需要在原来的基础上面进行修改就可以了:


2.字符串放到新的列表里面

4.提取高频词语

机器学习模块sklearn可以帮助我们处理这个问题,这个模块里面含有许多的函数,可以直接进行评论的提取以及高频词的统计;sklearn不是内置的模块,需要我们在本地进行安装

(1)STEP1. 导入模块

我们需使用
from...import...,从 sklearn.feature_extraction.text 模块中导入 CountVectorizer 类。


(2)STEP2. 创建CountVectorizer对象

导入模块后,需要创建一个CountVectorizer对象,这样才能调用CountVectorizer类里面的某个方法或属性。

由于我们只想从评价中筛选出前15个出现频率最高的词语,所以传入了max_features=15。

# 从sklearn.feature_extraction.text中导入CountVectorizer
from sklearn.feature_extraction.text import CountVectorizer# 创建CountVectorizer对象,并存储在vect中
vect = CountVectorizer(max_features=15)


(3)STEP3. 使用fit_transform()函数构造词袋模型

X = vect.fit_transform(word)

这个里面的word就是我们前面新建的列表

这个里面的生成结果全部是数字,我们来解释一下:

(4)STEP4. 使用get_feature_names()提取关键词

# TODO 对vect对象使用get_feature_names(),并将结果赋值给keywords
keywords = vect.get_feature_names()# 输出keywords
print(keywords)

最后的返回结果就是高频词:

这篇关于Python人工智能应用---中文分词词频统计的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/877883

相关文章

Conda与Python venv虚拟环境的区别与使用方法详解

《Conda与Pythonvenv虚拟环境的区别与使用方法详解》随着Python社区的成长,虚拟环境的概念和技术也在不断发展,:本文主要介绍Conda与Pythonvenv虚拟环境的区别与使用... 目录前言一、Conda 与 python venv 的核心区别1. Conda 的特点2. Python v

Python使用python-can实现合并BLF文件

《Python使用python-can实现合并BLF文件》python-can库是Python生态中专注于CAN总线通信与数据处理的强大工具,本文将使用python-can为BLF文件合并提供高效灵活... 目录一、python-can 库:CAN 数据处理的利器二、BLF 文件合并核心代码解析1. 基础合

Python使用OpenCV实现获取视频时长的小工具

《Python使用OpenCV实现获取视频时长的小工具》在处理视频数据时,获取视频的时长是一项常见且基础的需求,本文将详细介绍如何使用Python和OpenCV获取视频时长,并对每一行代码进行深入解析... 目录一、代码实现二、代码解析1. 导入 OpenCV 库2. 定义获取视频时长的函数3. 打开视频文

PostgreSQL的扩展dict_int应用案例解析

《PostgreSQL的扩展dict_int应用案例解析》dict_int扩展为PostgreSQL提供了专业的整数文本处理能力,特别适合需要精确处理数字内容的搜索场景,本文给大家介绍PostgreS... 目录PostgreSQL的扩展dict_int一、扩展概述二、核心功能三、安装与启用四、字典配置方法

Python中你不知道的gzip高级用法分享

《Python中你不知道的gzip高级用法分享》在当今大数据时代,数据存储和传输成本已成为每个开发者必须考虑的问题,Python内置的gzip模块提供了一种简单高效的解决方案,下面小编就来和大家详细讲... 目录前言:为什么数据压缩如此重要1. gzip 模块基础介绍2. 基本压缩与解压缩操作2.1 压缩文

Python设置Cookie永不超时的详细指南

《Python设置Cookie永不超时的详细指南》Cookie是一种存储在用户浏览器中的小型数据片段,用于记录用户的登录状态、偏好设置等信息,下面小编就来和大家详细讲讲Python如何设置Cookie... 目录一、Cookie的作用与重要性二、Cookie过期的原因三、实现Cookie永不超时的方法(一)

Python内置函数之classmethod函数使用详解

《Python内置函数之classmethod函数使用详解》:本文主要介绍Python内置函数之classmethod函数使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录1. 类方法定义与基本语法2. 类方法 vs 实例方法 vs 静态方法3. 核心特性与用法(1编程客

Python函数作用域示例详解

《Python函数作用域示例详解》本文介绍了Python中的LEGB作用域规则,详细解析了变量查找的四个层级,通过具体代码示例,展示了各层级的变量访问规则和特性,对python函数作用域相关知识感兴趣... 目录一、LEGB 规则二、作用域实例2.1 局部作用域(Local)2.2 闭包作用域(Enclos

Python实现对阿里云OSS对象存储的操作详解

《Python实现对阿里云OSS对象存储的操作详解》这篇文章主要为大家详细介绍了Python实现对阿里云OSS对象存储的操作相关知识,包括连接,上传,下载,列举等功能,感兴趣的小伙伴可以了解下... 目录一、直接使用代码二、详细使用1. 环境准备2. 初始化配置3. bucket配置创建4. 文件上传到os

使用Python实现可恢复式多线程下载器

《使用Python实现可恢复式多线程下载器》在数字时代,大文件下载已成为日常操作,本文将手把手教你用Python打造专业级下载器,实现断点续传,多线程加速,速度限制等功能,感兴趣的小伙伴可以了解下... 目录一、智能续传:从崩溃边缘抢救进度二、多线程加速:榨干网络带宽三、速度控制:做网络的好邻居四、终端交互