FreeRtos入门-4 事件组与同步点

2024-04-04 22:28

本文主要是介绍FreeRtos入门-4 事件组与同步点,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

事件组

事件组

同步点

创建

xEventGroupCalc = xEventGroupCreate();//1,创建事件组

xEventGroupSyc = xEventGroupCreate()

设置

xEventGroupSetBits(xEventGroupCalc,(1<<0));//设置事件组bit0 位

xEventGroupSync(xEventGroupSyc,BUSYING,ALL,portMAX_DELAY);

//BUSYING = 1 << 0,

//ALL = 1 << 0 | 1 << 1 | 1 << 2

等待

xEventGroupWaitBits(xEventGroupCalc,(1<<0)|(1<<1),pdTRUE,pdTRUE,portMAX_DELAY);

//xclearonexit:退出是否清除。xwaitforallbits:是否等待所有的事件位有数据

/

总结

1,事件组解决多个生产者,都在产生数据时,各自往对应的bit位给状态通知。

2,消费者等待不同的bit未是否完成,可以是等待所有位也可以只等待其中一个完成。

3,事件组只能传递完成状态,而不能传递数据,传递数据还要通过队列方式

1,同步点,创建同事件组。

2,设置不同于事件组,要传递对应位以及所有需要同步的位的组合。

3,当所有任务都放入事件组,标志位都以完成,才能退出阻塞。

1,事件组由一组标志位组成,每一个标志位代表一个特定的时间。

任务可以等待某些标志位被置位或清除。

2,队列,信号量。都是只能共用标志位,无法多标志多个事件。

3,事件组包含,事件创建,生产者1,写bit0,生产者2,写bit1.

消费者等待bit0或bit1。也可以只等待其中一个bit0。

/*
任务1,sum++,sum 每加到1000次后,往队列存放数据,并且记录事件组bit0
任务2,dec--,dec 每减到1000次后,往队列存放数据,并且记录事件组bit1
任务3,等待事件组,bit0,bit1同时标志时,从队列中取出数据打印
*/
static int sum = 0;
static int dec = 0;
static QueueHandle_t qHandle_f1;
static QueueHandle_t qHandle_f2;
static EventGroupHandle_t xEventGroupCalc;void Task1function(void *param)
{int i;while(1){for(i=0;i<1000;i++){sum++;}xQueueSend(qHandle_f1, &sum, portMAX_DELAY);xEventGroupSetBits(xEventGroupCalc,(1<<0));//设置事件组bit0 位}
}
void Task2function(void *param)
{int i;while(1){for(i=0;i<1000;i++){dec--;}xQueueSend(qHandle_f2, &dec, portMAX_DELAY);xEventGroupSetBits(xEventGroupCalc,(1<<1));//设置事件组bit1 位}
}
void Task3function(void *param)
{int val_sum;int val_dec;while(1){xEventGroupWaitBits(xEventGroupCalc,(1<<0)|(1<<1),pdTRUE,pdTRUE,portMAX_DELAY);//xclearonexit:退出是否清除。xwaitforallbits:是否等待所有的事件位有数据xQueueReceive(qHandle_f1,&val_sum,portMAX_DELAY);xQueueReceive(qHandle_f2,&val_dec,portMAX_DELAY);printf("sum = %d,dec=%d\r\n",val_sum,val_dec);}
}
int main( void )
{prvSetupHardware();printf("Hello, world!\r\n");qHandle_f1 = xQueueCreate(10,sizeof(int));qHandle_f2 = xQueueCreate(10,sizeof(int));xEventGroupCalc = xEventGroupCreate();//1,创建事件组xTaskCreate(Task1function, "Task1", 100,NULL, 1, NULL);//xTaskCreate(Task2function, "Task2", 100,NULL, 1, NULL);//xTaskCreate(Task3function, "Task3", 100,NULL, 1, NULL);///* Start the scheduler. */vTaskStartScheduler();/* Will only get here if there was not enough heap space to create theidle task. */return 0;
}

同步点

当多个时间同时完成后,执行后面的操作。否则后面的操作处于阻塞状态。

/*
任务1,买菜    buying
任务2,炒菜    cooking
任务3,摆桌    tableing当3个任务都完成时,吃饭 eating
*/
typedef enum
{BUYING =  1 << 0,COOKING = 1 << 1,TABLEING = 1 << 2,ALL = 1 << 0 | 1 << 1 | 1 << 2  
}eWork_t;
static EventGroupHandle_t xEventGroupSyc;
static SemaphoreHandle_t xSemapMutex;void Task1function(void *param)
{while(1){xSemaphoreTake(xSemapMutex, portMAX_DELAY);printf("task1 is buying\r\n");xSemaphoreGive(xSemapMutex);xEventGroupSync(xEventGroupSyc,BUYING,ALL,portMAX_DELAY);xSemaphoreTake(xSemapMutex, portMAX_DELAY);printf("task1 is eating\r\n");xSemaphoreGive(xSemapMutex);vTaskDelay(2);}
}void Task2function(void *param)
{while(1){xSemaphoreTake(xSemapMutex, portMAX_DELAY);printf("task2 is cooking\r\n");xSemaphoreGive(xSemapMutex);xEventGroupSync(xEventGroupSyc,COOKING,ALL,portMAX_DELAY);xSemaphoreTake(xSemapMutex, portMAX_DELAY);printf("task2 is eating\r\n");xSemaphoreGive(xSemapMutex);vTaskDelay(2);}
}
void Task3function(void *param)
{while(1){    xSemaphoreTake(xSemapMutex, portMAX_DELAY);printf("task3 is tableing\r\n");xSemaphoreGive(xSemapMutex);xEventGroupSync(xEventGroupSyc,TABLEING,ALL,portMAX_DELAY);xSemaphoreTake(xSemapMutex, portMAX_DELAY);printf("task3 is eating\r\n");xSemaphoreGive(xSemapMutex);vTaskDelay(2);}
}
int main( void )
{prvSetupHardware();printf("Hello, world!\r\n");xEventGroupSyc = xEventGroupCreate();//创建同步点xSemapMutex = xSemaphoreCreateMutex();//创建互斥锁xTaskCreate(Task1function, "Task1", 100,NULL, 3, NULL);//xTaskCreate(Task2function, "Task2", 100,NULL, 2, NULL);//xTaskCreate(Task3function, "Task3", 100,NULL, 1, NULL);///* Start the scheduler. */vTaskStartScheduler();/* Will only get here if there was not enough heap space to create theidle task. */return 0;
}

这篇关于FreeRtos入门-4 事件组与同步点的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/876961

相关文章

C#如何动态创建Label,及动态label事件

《C#如何动态创建Label,及动态label事件》:本文主要介绍C#如何动态创建Label,及动态label事件,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C#如何动态创建Label,及动态label事件第一点:switch中的生成我们的label事件接着,

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

Linux搭建Mysql主从同步的教程

《Linux搭建Mysql主从同步的教程》:本文主要介绍Linux搭建Mysql主从同步的教程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux搭建mysql主从同步1.启动mysql服务2.修改Mysql主库配置文件/etc/my.cnf3.重启主库my

Python FastAPI入门安装使用

《PythonFastAPI入门安装使用》FastAPI是一个现代、快速的PythonWeb框架,用于构建API,它基于Python3.6+的类型提示特性,使得代码更加简洁且易于绶护,这篇文章主要介... 目录第一节:FastAPI入门一、FastAPI框架介绍什么是ASGI服务(WSGI)二、FastAP

spring @EventListener 事件与监听的示例详解

《spring@EventListener事件与监听的示例详解》本文介绍了自定义Spring事件和监听器的方法,包括如何发布事件、监听事件以及如何处理异步事件,通过示例代码和日志,展示了事件的顺序... 目录1、自定义Application Event2、自定义监听3、测试4、源代码5、其他5.1 顺序执行

Java中将异步调用转为同步的五种实现方法

《Java中将异步调用转为同步的五种实现方法》本文介绍了将异步调用转为同步阻塞模式的五种方法:wait/notify、ReentrantLock+Condition、Future、CountDownL... 目录异步与同步的核心区别方法一:使用wait/notify + synchronized代码示例关键

详谈redis跟数据库的数据同步问题

《详谈redis跟数据库的数据同步问题》文章讨论了在Redis和数据库数据一致性问题上的解决方案,主要比较了先更新Redis缓存再更新数据库和先更新数据库再更新Redis缓存两种方案,文章指出,删除R... 目录一、Redis 数据库数据一致性的解决方案1.1、更新Redis缓存、删除Redis缓存的区别二

Python中的异步:async 和 await以及操作中的事件循环、回调和异常

《Python中的异步:async和await以及操作中的事件循环、回调和异常》在现代编程中,异步操作在处理I/O密集型任务时,可以显著提高程序的性能和响应速度,Python提供了asyn... 目录引言什么是异步操作?python 中的异步编程基础async 和 await 关键字asyncio 模块理论

Nacos集群数据同步方式

《Nacos集群数据同步方式》文章主要介绍了Nacos集群中服务注册信息的同步机制,涉及到负责节点和非负责节点之间的数据同步过程,以及DistroProtocol协议在同步中的应用... 目录引言负责节点(发起同步)DistroProtocolDistroSyncChangeTask获取同步数据getDis