Python环境下基于离散小波变换的信号降噪方法

2024-04-04 21:52

本文主要是介绍Python环境下基于离散小波变换的信号降噪方法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Mallat创造了小波分析中的经典理论之一,即多分辨率分析的概念。后来,在Mallat与Meyer的共同努力之下,他们又在这一理论的基础上发明了离散小波变换的快速算法,这就是Mallat塔式算法,这种算法可以大量减少计算时间。在之前的二十年之间,小波分析方法在自身不断发展壮大的同时,也被许多学者在信号降噪领域进行了普及与应用。以Mallat为代表的一系列学者提出了模极大值重构滤波方法。这一方法的原理是:信号与噪声的小波系数在变换尺度变化的情况下,Lipschitz指数会呈现出不同的变化特点,以此来分辨信号与噪声从而进行滤波处理。

Donoho和JollllStone等在小波变换的基础上首次提出了小波域阈值滤波原理,该原理认为幅值较大的小波系数是由信号产生的。随后Donoho进一步完善了该方法,并在高斯噪声模型下推导出了通用阈值公式。Coifman和Donoho在进一步完善了小波阈值滤波方法后,提出了一种既能有效地实现信号降噪,又能抑制伪吉布斯现象的方法,这就是平移不变量降噪法。

在综上所述的所有方法中,小波域阈值降噪方法在实际操作上更为简便,同时在计算上的工作量相比于其他方法也少很多,因而得到了最为广泛的应用。这也是本文选取小波阈值降噪方法开展试验探索的原因之一。但是,如何选择小波基与阈值函数,以及怎样来确定阈值等等,这些都是小波阈值降噪方法在实践中亟待解决的几个关键问题。常用的小波基种类有很多,所以对于不同的信号,选择什么样的小波函数能实现最优的降噪效果是一个有待解决的问题。

对于如何选取阈值函数的问题,可以从显示和隐式两类阈值函数分别进行分析。首先显式阈值函数秉持的核心观点是:仅处理较大的小波系数,而将较小的统统去掉。具体的代表有:硬阈值和软阈值两种阈值函数,对于数值较大的小波系数,硬阈值函数对其进行了保留,而软阈值函数却对其进行了一定的收缩处理;

基于Donoho的研究成果,有学者提出了半软阈值函数,但是在实际的操作中,需要确定两个阈值以及计算上的复杂性成为它在实践中的缺点;为了弥补这一系列不足,有学者又在不久之后提出用Garrote函数作为阈值函数,这样做的原因在于这种阈值函数在形式上类似于硬阈值函数,其自身具有一定程度的连续性。其次,隐式阈值函数是以贝叶斯模型为基础提出来的,它围绕的核心思想是假设真实信号的小波系数服从某一先验分布。这类阈值函数的确定往往需要扎实的统计学基础,且操作起来难度较大,在实际应用中并不多见,缺少一定的实践意义,此处便不再赘述。

对于降噪方法,还有一个问题不容忽视,即如何选择阈值。Donoho首先提出了通用阈值,之后,其在对于SURE函数的研究中,提出了Stein无偏风险阈值。Jason将广义交互验证原理用于降噪算法,可在不知道噪声方差的情况下获得最优的阈值。Abramovich把小波阈值处理当作一种多重假设检验问题,并使用错误发现率方法去检验它以获取最优阈值,该阈值称为FDR阈值。Chang基于贝叶斯框架,认为小波系数服从广义高斯分布,提出了一种简单且封闭式的阈值——贝叶斯阈值,该阈值在图像处理领域得到了广泛应用。

该项目采用简单的离散小波分解对信号进行降噪,采用多种阈值方法,如下:

1. **universal**

The threshold, in this case, is given by the formula MAD x sqrt{2 x log(m)},

where MAD is the Median Absolute Deviation, and m is the length of the signal.

2. **sqtwolog**

Same as the universal, except that it does not use the MAD.

3. **energy**

In this case, the thresholding algorithm estimates the energy levels

of the detail coefficients and uses them to estimate the optimal threshold.

4. **stein**

This method implements Stein's unbiased risk estimator.

5. **heurstein**

This is a heuristic implementation of Stein's unbiased risk estimator.

运行环境为Python环境,所使用的模块如下:

numpy
scipy
matplotlib
scikit-learn
PyWavelets
Pandas

运行代码如下:

import numpy as np
# import pandas as pd
import matplotlib.pylab as plt# from scipy.signal import butter, filtfilt
from scipy.signal import spectrogramfrom denoising import WaveletDenoisingdef plot_coeffs_distribution(coeffs):"""! Plots all the wavelet decomposition's coefficients. """fig = plt.figure()size_ = int(len(coeffs) // 2) + 1if size_ % 2 != 0:size_ = size_+1for i in range(len(coeffs)):ax = fig.add_subplot(size_, 2, i+1)ax.hist(coeffs[i], bins=50)def pretty_plot(data, titles, palet, fs=1, length=100, nperseg=256):"""! Plots the contents of the list data. """fig = plt.figure(figsize=(13, 13))fig.subplots_adjust(hspace=0.5, wspace=0.5)index = 1for i, d in enumerate(data):ax = fig.add_subplot(8, 2, index)ax.plot(d[:length], color=palet[i])ax.set_title(titles[i])ax = fig.add_subplot(8, 2, index+1)f, t, Sxx = spectrogram(d, fs=fs, nperseg=nperseg)ax.pcolormesh(t, f, Sxx, shading='auto')index += 2def run_experiment(data, level=2, fs=1, nperseg=256, length=100):"""! Run the wavelet denoising over the input data for each thresholdmethod."""# Experiments titles / thresholding methodstitles = ['Original data','Universal Method','SURE Method','Energy Method','SQTWOLOG Method','Heursure Method']# Theshold methodsexperiment = ['universal','stein','energy','sqtwolog','heurstein']# WaveletDenoising class instancewd = WaveletDenoising(normalize=False,wavelet='db3',level=level,thr_mode='soft',selected_level=level,method="universal",energy_perc=0.90)# Run all the experiments, first element in res is the original datares = [data]for i, e in enumerate(experiment):wd.method = experiment[i]res.append(wd.fit(data))# Plot all the results for comparisonpalet = ['r', 'b', 'k', 'm', 'c', 'orange', 'g', 'y']pretty_plot(res,titles,palet,fs=fs,length=length,nperseg=nperseg)if __name__ == '__main__':# ECG Dataimport pandas as pdfs = 100raw_data = pd.read_pickle("data/apnea_ecg.pkl")N = int(len(raw_data) // 1000)data = raw_data[:N].valuesdata = data[:, 0]run_experiment(data, level=3, fs=fs)plt.show()

if __name__ == '__main__':raw_data = np.genfromtxt("./data/Z001.txt")fc = 40fs = 173.61w = fc / (fs / 2)b, a = butter(5, w, 'low')data = filtfilt(b, a, raw_data)run_experiment(data, level=4, fs=fs)plt.show()

完整代码:Python环境下基于离散小波变换的信号降噪方法

工学博士,担任《Mechanical System and Signal Processing》等期刊审稿专家,擅长领域:现代信号处理,机器学习,深度学习,数字孪生,时间序列分析,设备缺陷检测、设备异常检测、设备智能故障诊断与健康管理PHM等。

这篇关于Python环境下基于离散小波变换的信号降噪方法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/876900

相关文章

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

阿里开源语音识别SenseVoiceWindows环境部署

SenseVoice介绍 SenseVoice 专注于高精度多语言语音识别、情感辨识和音频事件检测多语言识别: 采用超过 40 万小时数据训练,支持超过 50 种语言,识别效果上优于 Whisper 模型。富文本识别:具备优秀的情感识别,能够在测试数据上达到和超过目前最佳情感识别模型的效果。支持声音事件检测能力,支持音乐、掌声、笑声、哭声、咳嗽、喷嚏等多种常见人机交互事件进行检测。高效推

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal

浅谈主机加固,六种有效的主机加固方法

在数字化时代,数据的价值不言而喻,但随之而来的安全威胁也日益严峻。从勒索病毒到内部泄露,企业的数据安全面临着前所未有的挑战。为了应对这些挑战,一种全新的主机加固解决方案应运而生。 MCK主机加固解决方案,采用先进的安全容器中间件技术,构建起一套内核级的纵深立体防护体系。这一体系突破了传统安全防护的局限,即使在管理员权限被恶意利用的情况下,也能确保服务器的安全稳定运行。 普适主机加固措施:

webm怎么转换成mp4?这几种方法超多人在用!

webm怎么转换成mp4?WebM作为一种新兴的视频编码格式,近年来逐渐进入大众视野,其背后承载着诸多优势,但同时也伴随着不容忽视的局限性,首要挑战在于其兼容性边界,尽管WebM已广泛适应于众多网站与软件平台,但在特定应用环境或老旧设备上,其兼容难题依旧凸显,为用户体验带来不便,再者,WebM格式的非普适性也体现在编辑流程上,由于它并非行业内的通用标准,编辑过程中可能会遭遇格式不兼容的障碍,导致操

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

安装nodejs环境

本文介绍了如何通过nvm(NodeVersionManager)安装和管理Node.js及npm的不同版本,包括下载安装脚本、检查版本并安装特定版本的方法。 1、安装nvm curl -o- https://raw.githubusercontent.com/nvm-sh/nvm/v0.39.0/install.sh | bash 2、查看nvm版本 nvm --version 3、安装

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学