【C++进阶】红黑树的复仇(红与黑的爱恨厮杀)

2024-04-04 17:20

本文主要是介绍【C++进阶】红黑树的复仇(红与黑的爱恨厮杀),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

🪐🪐🪐欢迎来到程序员餐厅💫💫💫

          主厨:邪王真眼

主厨的主页:Chef‘s blog  

 所属专栏:c++大冒险
 

 总有光环在陨落,总有新星在闪烁


引言:

之前我们学习了 AVL树,不得不惊叹于他那近乎绝对的平衡,然而也惋惜于插入删除效率的低下,今天要讲的红黑树则是以相对的平衡换来了插入删除效率的大幅提高,可谓是各有千秋

ps:建议先看过AVL树后再来学习红黑树:

带你手撕AVL树 


一. 红黑树的概念

         红黑树是一种二叉搜索树,但在每个结点上增加一个存储位表示结点的颜色,可以是Red或 Black。 通过对任何一条从根到叶子的路径上各个结点着色方式的限制,红黑树确保没有一条路径会比其他路径长出俩倍,因而是接近平衡的。

二 红黑树的性质

  • 1. 每个结点不是红色就是黑色
  • 2. 根节点是黑色的 
  • 3. 如果一个节点是红色的,则它的两个孩子结点是黑色的 
  • 4. 对于每个结点,从该结点到其所有后代叶结点的简单路径上,均包含相同数目的黑色结点 
  • 5. 每个叶子结点都是黑色的(此处的叶子结点指的是空结点)
思考:
为什么满足以上性质,红黑树就能保证:最长路径中节点个数不会超过最短路径节点 个数的2倍?

推导:

  • 性质1不必多说
  • 性质2与后面的旋转有关
  • 性质3表明不能有连续的红色结点
  • 性质4表明理论最短路径就是纯黑节点路径

综上:

            我们可以认为事先建造好一颗纯黑节点的满二叉树,再在两个黑节点之间插入红节点,则理论最长路径就是一黑一红交替,不超过最短路径的二倍。

 三.红黑树的节点讲解及模拟

enum Color
{RED,BLACK
};
template<class K, class V>
struct RBTreeNode
{RBTreeNode<K, V>* _left;RBTreeNode<K, V>* _right;RBTreeNode<K, V>* _parent;pair<K, V> _kv;Color _col;RBTreeNode(pair<K, V>& kv = pair<K, V>()):_left(nullptr), _right(nullptr), _parent(nullptr), _kv(kv), _col(RED)
};

代码讲解:

  • 1.我们枚举出了Color
  • 2.除左右指针外,还有父亲指针,使得可以向上回溯
  • 3.用pair对象存储K值V值
  • 4.增加了颜色的成员变量,且默认颜色为红色

提问:

           为什么结点的颜色初始化为红色呢?

回答:

           因为插入新节点时(不为根部),如果插入黑色,一定破坏性质4,导致每条路径黑结点数目不同;而如果插入红色,有可能不会破坏性质3,所以结点初始化为红色。

四.红黑树模拟

4.1 成员变量

template<class K, class V>
class RBTree
{
protected:typedef RBTreeNode<K, V> Node;
public://函数
protected :Node* _root;
};

4.2插入

与搜索二叉树以及AVL树相比,红黑树的默认成员函数和遍历相差不大,所以这里重点讲插入

4.2.1插入过程:

  1. 以普通二叉搜索树的方式进行插入
  2. 根据插入后的不同情况进行调整 
	bool Insert(pair<K, V>& kv){if (_root == nullptr){_root = new Node(val);return true;}else{Node* cur = _root;Node* parent = nullptrwhile (cur){parent = cur;if (cur->_val > val)cur = cur->left;else if (cur->_val < val)cur = cur->_right;elsereturn false;}cur = new Node(val);if (parent->_val.first > cur->_val.first){parent->_left = cur;}else{parent->_parent = cur;}cur->_parent = parent;///从此处开始进行插入后的调整while (parent && parent->_col == RED){Node* grandparent = parent->_parent;Node* uncle = nullptr;if (grandparent->_left == parent)uncle = grandparent->_right;elseuncle = grandparent->_left;if (uncle && uncle->_col == RED){parent->_col = BLACK;uncle->_col = BLACK;grandparent->_col = RED;cur = grandparent;parent = cur->_parent;}else if (grandparent->_left == parent){if (parent->_left = cur){RotateR(grandparent);grandparent->_col = RED;parent->_col = BLACK;}else{RotateL(parent);RotateR(grandparent);grandparent->_col = RED;cur->_col = BLACK;}}else{if (parent->_right = cur){RotateL(grandparent);grandparent->_col = RED;parent->_col = BLACK;}else{RotateR(parent);RotateL(grandparent);grandparent->_col = RED;cur->_col = BLACK;}}void RotateL(AVLNode * parent)//左旋{Node* grandparent = parent->_parent;Node* ChildR = parent->_right;if (grandparent){if (grandparent->_left == parent)grandparent->_left = ChildR;elsegrandparent->_right = ChildR;}else_root = ChildR;ChildR->_parent = grandparent;parent->_right = ChildR->_left;ChildR->_left->_parent = parent;ChildR->_left = parent;parent->_parent = ChildR;ChildR->_bf = parent->_bf = 0;}void RotateR(AVLNode * parent)//右旋{Node* grandparent = parent->_parent;Node* ChildL = parent->_left;if (grandparent){if (grandparent->_left == parent)grandparent->_left = ChildL;elsegrandparent->_right = ChildL;}else_root = ChildL;ChildL->_parent = grandparent;//两两一组进行改变parent->_left = ChildL->_right;ChildL->_right->_parent = parent;ChildL->_right = parent;parent->_parent = ChildL;//ChildL->_bf = parent->_bf = 0;}void RotateRL(AVLNode * parent)//双旋,先右旋在左旋{Node* ChildR = parent->_right;int bf = ChildR->_left->_bf;RotateR(ChildR);RotateL(parent);if (bf == 0){parent->_bf = 0;ChildR->_bf = 0;ChildR->_left->_bf = 0;}else if (bf == 1){parent->_bf = -1;ChildR->_bf = 0;ChildR->_left->_bf = 0;}else if (bf == -1){parent->_bf = 0;ChildR->_left->_bf = 0;ChildR->_bf = 1;}else{assert(false);}}void RotateLR(AVLNode * parent)//双旋,先左旋,再右旋{Node* ChildL = parent->_left;int bf = ChildL->_right->_bf;RotateR(ChildL);RotateL(parent);if (bf == 0){parent->_bf = 0;ChildL->_bf = 0;ChildL->_right->_bf = 0;}else if (bf == 1){parent->_bf = 0;ChildL->_bf = -1;ChildL->_right->_bf = 0;}else if (bf == -1){parent->_bf = 1;ChildL->_right->_bf = 0;ChildL->_bf = 0;}else{assert(false);}}void Inorde(AVLNode * root, vector<pair<K, V>>&v){if (root == nullptr)return;Inorde(root->_left, v);v.push_back(root->_val);Inorde(root->_right, v);}}}}

插入后调整的分析:

  • 1.像AVL树一样,大框架也是向上回溯,判断循环进行条件是父亲节点不为空且父亲节点颜色为红.因为新节点的默认颜色是红色,如果其双亲节点的颜色是黑色,没有违反红黑树任何 性质,则不需要调整;
  • 2当新插入节点的双亲节点颜色为红色时,就违反了性质三不能有连在一起的红色节点,此时需要对红黑树分情况来讨论:cur为当前节点,p为父节点,g为祖父节点,u为叔叔节点

    🍒🍒4.2.2情况一:

cur为红,p为红,g为黑,u存在且为红 

解决方式:
              将p,u改为黑,g改为红,然后把g当成cur,继续向上调整。


🍒🍒4.2.3情况二:

cur为红,p为红,g为黑,u不存在/u存在且为黑,p是g的左孩子,cur是p的左孩子

解决方案:

  1. 先对grandparent进行右单旋
  2. 再将parent变黑,grandparent变红


🍒🍒4.2.4情况三

cur为红,p为红,g为黑,u不存在/u存在且为黑,p是g的左孩子,cur是p的右孩子

  重点提醒:

               可以发现左单旋后就变成了情况二

解决方案:

  1. 先对parent进行左单旋
  2. 再对grandparent进行右单旋
  3. 最后将cur变黑,grandparent变红,这里将cur变黑而不是parent是因为左单旋后cur取代了parent的位置


🍒🍒4.2.5情况四:

cur为红,p为红,g为黑,u不存在/u存在且为黑,p是g的右孩子,cur是p的右孩子

解决方案:

  1. 先对grandparent进行左单旋
  2. 再将parent变黑,grandparent变红


🍒🍒4.2.6情况五:

cur为红,p为红,g为黑,u不存在/u存在且为黑,p是g的右孩子,cur是p的左孩子

重点提醒:

               可以发现右单旋后就变成了情况四

解决方案:

  1. 先对parent进行右单旋
  2. 再对grandparent进行左单旋
  3. 最后将cur变黑,grandparent变红,这里将cur变黑而不是parent是因为左单旋后cur取代了parent的位置

5.红黑树的验证

红黑树的检测分为两步:

1. 检测其是否满足二叉搜索树(中序遍历是否为有序序列)

void Inorde(AVLNode * root, vector<pair<K, V>>&v)
{if (root == nullptr)return;Inorde(root->_left, v);v.push_back(root->_val);Inorde(root->_right, v);
}

2. 检测其是否满足红黑树的性质

bool IsBalance(Node*root)
{//空树也是红黑树if (root == nullptr)return true;//违反性质2if (root->_col == RED){cout << "树的根节点应该是黑色,可该树却是红色" << endl;return false;}//计算一条路径黑节点数量Node* cur = root;int num = 0;while (cur){if (cur->_col == BLACK)num++;cur = cur->_left;}return _IsBlance(root, num);
}
IsBalance(Node* root, size_t num, size_t cur_num)
{if (root == nullptr){//违反性质4if (num != cur_num){cout << "对于每个结点,从该结点到其所有后代叶结点的简单路径上,均包含相同数目的黑色结点,但该树却不是" << endlreturn false;}elsereturn true;}if (root->_col == BLACK)num++;//违反性质3if (root->_parent && root->_parent == RED && root->_col == RED){cout << "如果一个节点是红色的,则它的两个孩子结点是黑色的,可该树却出现了连续的红色节点" << endl;return false;}return IsBalance(root->_left, num, cur_num) && IsBalance(root->_right, num, cur_num);
}

6. 红黑树与AVL树的比较

       红黑树和 AVL 树都是高效的平衡二叉树, 增删改查的时间复杂度都是O(log N) ,红黑树不追 求绝对平衡,其只需保证 最长路径不超过最短路径的2倍 降低了插入和旋转的次数 所以在经常进行增删的结构中性能比 AVL 树更优,而且红黑树实现比较简单,所以实际运用中红 黑树更多。

7. 红黑树的应用

  • 1. C++ STL库 -- map/set、mutil_map/mutil_set 
  • 2. Java 库
  • 3. linux内核
  • 4. 其他一些库

创作不易,点赞关注支持一下吧

这篇关于【C++进阶】红黑树的复仇(红与黑的爱恨厮杀)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/876390

相关文章

c++ 类成员变量默认初始值的实现

《c++类成员变量默认初始值的实现》本文主要介绍了c++类成员变量默认初始值,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录C++类成员变量初始化c++类的变量的初始化在C++中,如果使用类成员变量时未给定其初始值,那么它将被

C++中NULL与nullptr的区别小结

《C++中NULL与nullptr的区别小结》本文介绍了C++编程中NULL与nullptr的区别,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编... 目录C++98空值——NULLC++11空值——nullptr区别对比示例 C++98空值——NUL

C++ Log4cpp跨平台日志库的使用小结

《C++Log4cpp跨平台日志库的使用小结》Log4cpp是c++类库,本文详细介绍了C++日志库log4cpp的使用方法,及设置日志输出格式和优先级,具有一定的参考价值,感兴趣的可以了解一下... 目录一、介绍1. log4cpp的日志方式2.设置日志输出的格式3. 设置日志的输出优先级二、Window

从入门到精通C++11 <chrono> 库特性

《从入门到精通C++11<chrono>库特性》chrono库是C++11中一个非常强大和实用的库,它为时间处理提供了丰富的功能和类型安全的接口,通过本文的介绍,我们了解了chrono库的基本概念... 目录一、引言1.1 为什么需要<chrono>库1.2<chrono>库的基本概念二、时间段(Durat

C++20管道运算符的实现示例

《C++20管道运算符的实现示例》本文简要介绍C++20管道运算符的使用与实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录标准库的管道运算符使用自己实现类似的管道运算符我们不打算介绍太多,因为它实际属于c++20最为重要的

Visual Studio 2022 编译C++20代码的图文步骤

《VisualStudio2022编译C++20代码的图文步骤》在VisualStudio中启用C++20import功能,需设置语言标准为ISOC++20,开启扫描源查找模块依赖及实验性标... 默认创建Visual Studio桌面控制台项目代码包含C++20的import方法。右键项目的属性:

深度解析Python装饰器常见用法与进阶技巧

《深度解析Python装饰器常见用法与进阶技巧》Python装饰器(Decorator)是提升代码可读性与复用性的强大工具,本文将深入解析Python装饰器的原理,常见用法,进阶技巧与最佳实践,希望可... 目录装饰器的基本原理函数装饰器的常见用法带参数的装饰器类装饰器与方法装饰器装饰器的嵌套与组合进阶技巧

c++中的set容器介绍及操作大全

《c++中的set容器介绍及操作大全》:本文主要介绍c++中的set容器介绍及操作大全,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录​​一、核心特性​​️ ​​二、基本操作​​​​1. 初始化与赋值​​​​2. 增删查操作​​​​3. 遍历方

解析C++11 static_assert及与Boost库的关联从入门到精通

《解析C++11static_assert及与Boost库的关联从入门到精通》static_assert是C++中强大的编译时验证工具,它能够在编译阶段拦截不符合预期的类型或值,增强代码的健壮性,通... 目录一、背景知识:传统断言方法的局限性1.1 assert宏1.2 #error指令1.3 第三方解决

C++11委托构造函数和继承构造函数的实现

《C++11委托构造函数和继承构造函数的实现》C++引入了委托构造函数和继承构造函数这两个重要的特性,本文主要介绍了C++11委托构造函数和继承构造函数的实现,具有一定的参考价值,感兴趣的可以了解一下... 目录引言一、委托构造函数1.1 委托构造函数的定义与作用1.2 委托构造函数的语法1.3 委托构造函