自定义层与自定义块(李沐代码解析)

2024-04-04 13:12
文章标签 代码 自定义 解析 李沐

本文主要是介绍自定义层与自定义块(李沐代码解析),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

沐神文章与代码链接:
https://zh-v2.d2l.ai/chapter_deep-learning-computation/model-construction.html#id3

1.块是什么:

一个“块”可能指的是一系列层的组合

2.块的功能:

1. 将输入数据作为其前向传播函数的参数。2. 通过前向传播函数来生成输出。请注意,输出的形状可能与输入的形状不同。例如,我们上面模型中的第一个全连接的层接收任意维的输入,但是返回一个维度256的输出。3. 计算其输出关于输入的梯度,可通过其反向传播函数进行访问。通常这是自动发生的。4. 存储和访问前向传播计算所需的参数。5. 根据需要初始化模型参数

3.定义块的步骤:

1.定义构造函数---初始化各中层和参数
2.定义钱箱传播---神经网络通过前向传播函数来定义数据如何在网络中流动。

代码解析1:

class MLP(nn.Module):# 用模型参数声明层。这里,我们声明两个全连接的层def __init__(self):# 调用MLP的父类Module的构造函数来执行必要的初始化。# 这样,在类实例化时也可以指定其他函数参数,例如模型参数params(稍后将介绍)super().__init__()self.hidden = nn.Linear(20, 256)  # 隐藏层self.out = nn.Linear(256, 10)  # 输出层# 定义模型的前向传播,即如何根据输入X返回所需的模型输出def forward(self, X):# 注意,这里我们使用ReLU的函数版本,其在nn.functional模块中定义。return self.out(F.relu(self.hidden(X)))X=torch.rand(1,20)
net = MLP()
net(X)
net=MLP()时
1.启动__init__函数1.1 启动super().__init__(),负责基础的初始化1.2 定义两个层 self.hidden self.outnet(X)时
2.调用forward函数将输入X传给self.hidden将self.hidden的输出传给self.out注意:
1.F.relu()=torch.nn.functional.relu()
2.在定义两个层是就对层的参数进行了默认的初始化策略 (如果想要更改初始化策略需要,新创建一个初始化函数然后应用 如下)#使用Xavier均匀初始化方法初始化权重,使用零初始化方法初始化偏置
def init_weights(m): if type(m) == nn.Linear: init.xavier_uniform_(m.weight) init.zeros_(m.bias) # 应用初始化函数net.apply(init_weights)

代码解析2:

class FixedHiddenMLP(nn.Module):def __init__(self):super().__init__()# 不计算梯度的随机权重参数。因此其在训练期间保持不变self.rand_weight = torch.rand((20, 20), requires_grad=False)self.linear = nn.Linear(20, 20)def forward(self, X):X = self.linear(X)# 使用创建的常量参数以及relu和mm函数X = F.relu(torch.mm(X, self.rand_weight) + 1)# 复用全连接层。这相当于两个全连接层共享参数X = self.linear(X)# 控制流while X.abs().sum() > 1:X /= 2return X.sum()X=torch.rand(1,20)
net = FixedHiddenMLP()
net(X)
如何理解:定义块的目的:便是可以在多个层之间加上灵活的处理
__init__1.self.rand_weight = torch.rand((20, 20), requires_grad=False)创建了一个20x20的矩阵,且做了随机初始化之后,规定该矩阵的值不会变化2.定义了线性层__forward__通过定义块定义了类似于(但下面的代码肯定是不可行的)X=Sequential(Linear(20,20),F.relu(torch.mm(X, self.rand_weight) + 1),Linear(20,20))while X.abs().sum() >1:x/=2retun X.sum()

这篇关于自定义层与自定义块(李沐代码解析)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/875863

相关文章

使用Jackson进行JSON生成与解析的新手指南

《使用Jackson进行JSON生成与解析的新手指南》这篇文章主要为大家详细介绍了如何使用Jackson进行JSON生成与解析处理,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 核心依赖2. 基础用法2.1 对象转 jsON(序列化)2.2 JSON 转对象(反序列化)3.

Springboot @Autowired和@Resource的区别解析

《Springboot@Autowired和@Resource的区别解析》@Resource是JDK提供的注解,只是Spring在实现上提供了这个注解的功能支持,本文给大家介绍Springboot@... 目录【一】定义【1】@Autowired【2】@Resource【二】区别【1】包含的属性不同【2】@

springboot循环依赖问题案例代码及解决办法

《springboot循环依赖问题案例代码及解决办法》在SpringBoot中,如果两个或多个Bean之间存在循环依赖(即BeanA依赖BeanB,而BeanB又依赖BeanA),会导致Spring的... 目录1. 什么是循环依赖?2. 循环依赖的场景案例3. 解决循环依赖的常见方法方法 1:使用 @La

使用C#代码在PDF文档中添加、删除和替换图片

《使用C#代码在PDF文档中添加、删除和替换图片》在当今数字化文档处理场景中,动态操作PDF文档中的图像已成为企业级应用开发的核心需求之一,本文将介绍如何在.NET平台使用C#代码在PDF文档中添加、... 目录引言用C#添加图片到PDF文档用C#删除PDF文档中的图片用C#替换PDF文档中的图片引言在当

C#使用SQLite进行大数据量高效处理的代码示例

《C#使用SQLite进行大数据量高效处理的代码示例》在软件开发中,高效处理大数据量是一个常见且具有挑战性的任务,SQLite因其零配置、嵌入式、跨平台的特性,成为许多开发者的首选数据库,本文将深入探... 目录前言准备工作数据实体核心技术批量插入:从乌龟到猎豹的蜕变分页查询:加载百万数据异步处理:拒绝界面

用js控制视频播放进度基本示例代码

《用js控制视频播放进度基本示例代码》写前端的时候,很多的时候是需要支持要网页视频播放的功能,下面这篇文章主要给大家介绍了关于用js控制视频播放进度的相关资料,文中通过代码介绍的非常详细,需要的朋友可... 目录前言html部分:JavaScript部分:注意:总结前言在javascript中控制视频播放

SpringCloud动态配置注解@RefreshScope与@Component的深度解析

《SpringCloud动态配置注解@RefreshScope与@Component的深度解析》在现代微服务架构中,动态配置管理是一个关键需求,本文将为大家介绍SpringCloud中相关的注解@Re... 目录引言1. @RefreshScope 的作用与原理1.1 什么是 @RefreshScope1.

Java并发编程必备之Synchronized关键字深入解析

《Java并发编程必备之Synchronized关键字深入解析》本文我们深入探索了Java中的Synchronized关键字,包括其互斥性和可重入性的特性,文章详细介绍了Synchronized的三种... 目录一、前言二、Synchronized关键字2.1 Synchronized的特性1. 互斥2.

使用Sentinel自定义返回和实现区分来源方式

《使用Sentinel自定义返回和实现区分来源方式》:本文主要介绍使用Sentinel自定义返回和实现区分来源方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Sentinel自定义返回和实现区分来源1. 自定义错误返回2. 实现区分来源总结Sentinel自定

Spring Boot 3.4.3 基于 Spring WebFlux 实现 SSE 功能(代码示例)

《SpringBoot3.4.3基于SpringWebFlux实现SSE功能(代码示例)》SpringBoot3.4.3结合SpringWebFlux实现SSE功能,为实时数据推送提供... 目录1. SSE 简介1.1 什么是 SSE?1.2 SSE 的优点1.3 适用场景2. Spring WebFlu