贵州省NPP净初级生产力数据/NDVI数据

2024-04-04 00:36

本文主要是介绍贵州省NPP净初级生产力数据/NDVI数据,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

     数据福利是专门为关注小编博客及公众号的朋友定制的,未关注用户不享受免费共享服务,已经被列入黑名单的用户和单位不享受免费共享服务。参与本号发起的数据众筹,向本号捐赠过硬盘以及多次转发、评论的朋友优先享有免费共享服务。

净初级生产力NPP数据


引言

        第一性生产力是绿色植物呼吸后所剩下的单位面积单位时间内所固定的能量或所生产的有机物质,即是总第一性生产量减去植物呼吸作用所剩下的能量或有机物质。多种卫星遥感数据反演净初级生产力(NPP)产品是地理遥感生态网平台推出的生态环境类系列数据产品之一。

正文


数据简介

        植物通过光合作用将太阳能固定并转化为植物生物量。单位时间和单位面积上,绿色植物通过光合作用产生的全部有机物同化量,即光合总量,叫总初级生产力(Gross Primary Productivity,GPP);净初级生产力则是由光合作用所产生的有机质总量中扣除自养呼吸后的剩余部分。净初级生产力(net primary productivity,NPP)是生产者能用于生长、发育和繁殖的能量值,也是生态系统中其他生物成员生存和繁衍的物质基础。

        贵州,地处中国西南内陆地区腹地。境内地势西高东低,自中部向北、东、南三面倾斜,平均海拔在1100米左右。贵州的气候温暖湿润,属亚热带湿润季风气候。

        地理遥感生态网提供的NPP数据基于CASA模型估算,其计算植被NPP的基本思想是利用植被获取太阳辐射, 加上植被自身利用的情况, 从而估算出植被净生长状况。模型中所估算的NPP可以由植被吸收的光合有效辐射(APAR)和实际光能利用率(ε)两个因子来表示, 公式如下:

式中, x代表单个像元, t表示月份, APAR(xt)则表示像元xt月吸收的光合有效辐射(gC/m2), ε(xt)表示单个像元xt月的实际光能利用率(gC/MJ)。

数据名称

净初级生产力NPP数据

数据类型

栅格 

数据格式

GRID、TIFF

分辨率/比例尺

10m、30m、100m、250m、500m、1km等多种分辨率

覆盖范围

全境陆地国土

坐标系 

默认投影为Krasovsky_1940_Albers,其他坐标系可进行投影转换

时间序列

基本时间序列: 1980年-至今;时间尺度逐月逐年

《10米精度NPP净初级生产力数据集》共享方法如下:

(1)人员,限定为关注小编的用户。

(2)各类项目(包括各类科研项目)申请本数据扔享受免费政策,但需向本号捐赠一定数量的硬盘才能获取。

(3)捐赠硬盘可免留言获取数据。

        地理遥感生态网上分享了很多地理遥感领域的科学数据(土地利用数据、npp净初级生产力数据数据、NDVI数据、径流量数据、夜间灯光数据、统计年鉴、道路网、POI兴趣点数据、GDP分布、人口密度分布、三级流域矢量边界、地质灾害分布数据、土壤类型、土壤质地、土壤有机质、土壤PH值、土壤质地、土壤侵蚀、植被类型、自然保护区分布、建筑轮廓分布等等地理数据,以及关于gis、遥感从方面的操作教程)。

原文链接:https://bbs.csdn.net/forums/gisrs?spm=1001.2014.3001.6682

这篇关于贵州省NPP净初级生产力数据/NDVI数据的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/874383

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

烟火目标检测数据集 7800张 烟火检测 带标注 voc yolo

一个包含7800张带标注图像的数据集,专门用于烟火目标检测,是一个非常有价值的资源,尤其对于那些致力于公共安全、事件管理和烟花表演监控等领域的人士而言。下面是对此数据集的一个详细介绍: 数据集名称:烟火目标检测数据集 数据集规模: 图片数量:7800张类别:主要包含烟火类目标,可能还包括其他相关类别,如烟火发射装置、背景等。格式:图像文件通常为JPEG或PNG格式;标注文件可能为X

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

pandas数据过滤

Pandas 数据过滤方法 Pandas 提供了多种方法来过滤数据,可以根据不同的条件进行筛选。以下是一些常见的 Pandas 数据过滤方法,结合实例进行讲解,希望能帮你快速理解。 1. 基于条件筛选行 可以使用布尔索引来根据条件过滤行。 import pandas as pd# 创建示例数据data = {'Name': ['Alice', 'Bob', 'Charlie', 'Dav