C++(12): std::mutex及其高级变种的使用

2024-04-03 23:52
文章标签 c++ 使用 高级 std 变种 mutex

本文主要是介绍C++(12): std::mutex及其高级变种的使用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. 简述

在多线程或其他许多场景下,同时对一个变量或一段资源进行读写操作是一个比较常见的过程,保证数据的一致性和防止竞态条件至关重要。

C++的标准库中为我们提供了使用的互斥及锁对象,帮助我们实现资源的互斥操作。

2. std::mutex及其衍生互斥手段

(1)互斥类

std::mutex,最基本的 mutex 类。

std::recursive_mutex,递归 mutex 类。

std::time_mutex,定时 mutex 类。

std::recursive_timed_mutex,定时递归 mutex 类。

(2)RAII上锁

std::lock_guard,与 Mutex RAII 相关,方便线程对互斥量上锁。

std::unique_lock,与 Mutex RAII 相关,方便线程对互斥量上锁,但提供了更好的上锁和解锁控制。

(3)API

std::try_lock,尝试上锁。如果当前互斥量已经被其他线程占用,当前线程不会阻塞,而是立即返回false。如果当前互斥量没有被其他线程占用,当前线程会获得该互斥量,完成上锁。需要注意的是,如果当前线程已经获得了该互斥量,那么再次进行try_lock就会造成死锁。

std::lock,上锁。调用该API会将互斥两上锁,如果当前互斥量已经被其他线程占用,则会阻塞,知道当前线程获得该锁。

std::unlock:解锁。

std::call_once,如果多个线程需要同时调用某个函数,call_once 可以保证多个线程对该函数只调用一次。

3. std::mutex使用

        std::mutex是最简单的互斥量,可以单独使用为资源创建互斥环境,也可以与std::lock_guard合起来使用,实现一个RAII的应用。

        需要注意的是,std::mutex仅支持一次加锁和解锁。如下是一个简单地小程序。

/** 引用头文件. */#include <mutex>/** 创建互斥量. */std::mutex mtx;/** 需要共享的某个资源 */int sharedResource;/** 操作上述共享资源的函数 */void accessResource() {/** 尝试加锁 */mtx.lock();/** 临界区开始 - 访问共享资源 */sharedResource += 1;/** 临界区结束 - 释放锁 */mtx.unlock();}

        接下来是一个配合lock_guard使用的例程。

/** 引用头文件. */#include <mutex>/** 创建互斥量. */std::mutex mtx;/** 需要共享的某个资源 */int sharedResource;/** 操作上述共享资源的函数 */void accessResource() {/** 尝试加锁 */std::lock_guard<std::mutex> guard(mtx); // 自动加锁/** 临界区开始 - 访问共享资源 */sharedResource += 1;/** 退出函数,自动释放. */}

4. std::recursive_mutex递归锁

        从名字可以看出,递归所是可以多次上锁的,当然也需要配合多次解锁,通常情况下也仅用在递归环境下。

        如下是简单的使用std::recursive_mutex的示例。

#include <iostream>#include <thread>#include <mutex>std::recursive_mutex mtx;void func(int n) {mtx.lock();std::cout << "Thread " << n << " locked the mutex" << std::endl;if (n > 1) {func(n - 1);}std::cout << "Thread " << n << " unlocked the mutex" << std::endl;mtx.unlock();}int main() {std::thread t1(func, 3);std::thread t2(func, 2);t1.join();t2.join();return 0;}

        如下是配合lock_guard使用的示例。

#include <iostream>#include <thread>#include <mutex>std::recursive_mutex mtx;void func(int n) {std::lock_guard<std::recursive_mutex> guard(mtx);std::cout << "Thread " << n << " locked the mutex" << std::endl;if (n > 1) {func(n - 1);}std::cout << "Thread " << n << " unlocked the mutex" << std::endl;}int main() {std::thread t1(func, 3);std::thread t2(func, 2);t1.join();t2.join();return 0;}

5. std::timed_mutex

        std::timed_mutex 类似于 std::mutex,也是一个较为简单的锁。但是它额外提供了两个接口分别是 try_lock_for() 和 try_lock_until() 成员函数。前者允许线程尝试在一段时间内获取锁,如果在指定的时间内未能获得锁,线程将返回失败,并且可以根据返回值来判断是否继续等待或者执行其他逻辑。后者是一个确定的时间点,当到达指定的时间点以后,互斥锁不能够使用,则返回。

        使用 std::timed_mutex 可以帮助避免线程因为获取锁时长时间阻塞而导致程序性能下降或死锁情况的发生。

6. std::lock_guard和std::unique_lock

        std::lock_guard 和 std::unique_lock 都是 C++ 标准库中用于管理互斥量(mutex)的 RAII(Resource Acquisition Is Initialization,资源获取即初始化)包装器。它们都可以确保在持有互斥量的作用域内,互斥量会被安全地锁定和解锁,从而避免死锁和其他并发问题。不过,std::unique_lock 比 std::lock_guard 提供了更多的灵活性和功能。下面是它们的一些主要区别以及使用示例。

        我们在前面第3节和第4节都列举了使用lock_guard的使用,lock_guard的优点是使用简单,缺点是过于简单了。

        unique_lock能够实现和lock_guard一样的动能,也提供了更灵活的上锁和解锁控制。

        unique_lock含有第二参数,如下所示:


std::adopt_lock :表示这个互斥量已经被lock了,你必须要把互斥量提前lock了,否则会报异常。std::adopt_lock标记的效果就是假设调用一方已经拥有了互斥量的所有权(也就是已经lock成功了),通知lock_guard和unique_lock不需要 再构造函数中lock这个互斥量了。

std::try_to_lock:我们会尝试用mutex的lock()去锁定这个mutex,但是如果没有锁定成功,也会立即返回,并不会阻塞在那里;使用这个try_to_lock的前提是你自己不能先lock。

std::defer_lock:不给mutex加锁,初始化了一个没有加锁的mutex。

前面讲到,unique_lock比lock_guard更为灵活,体现在哪里呢?事实上,unique_lock还拥有自己的成员函数,我们可以灵活的调用它的成员函数进行加解锁,而不是依赖于RAII。


        unique_lock的成员函数如下

lock:调用所管理的mutex对象的lock函数;

try_lock:调用所管理的mutex对象的try_lock函数;

try_lock_for:调用所管理的mutex对象的try_lock_for函数

try_lock_until:调用所管理的mutex对象的try_lock_until函数;

unlock:调用所管理的mutex对象的unlock函数;

release :返回所管理的mutex对象的指针,并释放所有权,但不改变mutex对象的状态;

owns_lock:返回当前std::unique_lock对象是否获得了锁;

mutex:返回当前std::unique_lock对象所管理的mutex对象的指针;

swap:交换两个unique_lock对象;

这篇关于C++(12): std::mutex及其高级变种的使用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/874306

相关文章

C语言中联合体union的使用

本文编辑整理自: http://bbs.chinaunix.net/forum.php?mod=viewthread&tid=179471 一、前言 “联合体”(union)与“结构体”(struct)有一些相似之处。但两者有本质上的不同。在结构体中,各成员有各自的内存空间, 一个结构变量的总长度是各成员长度之和。而在“联合”中,各成员共享一段内存空间, 一个联合变量

关于C++中的虚拟继承的一些总结(虚拟继承,覆盖,派生,隐藏)

1.为什么要引入虚拟继承 虚拟继承是多重继承中特有的概念。虚拟基类是为解决多重继承而出现的。如:类D继承自类B1、B2,而类B1、B2都继承自类A,因此在类D中两次出现类A中的变量和函数。为了节省内存空间,可以将B1、B2对A的继承定义为虚拟继承,而A就成了虚拟基类。实现的代码如下: class A class B1:public virtual A; class B2:pu

C++对象布局及多态实现探索之内存布局(整理的很多链接)

本文通过观察对象的内存布局,跟踪函数调用的汇编代码。分析了C++对象内存的布局情况,虚函数的执行方式,以及虚继承,等等 文章链接:http://dev.yesky.com/254/2191254.shtml      论C/C++函数间动态内存的传递 (2005-07-30)   当你涉及到C/C++的核心编程的时候,你会无止境地与内存管理打交道。 文章链接:http://dev.yesky

C++的模板(八):子系统

平常所见的大部分模板代码,模板所传的参数类型,到了模板里面,或实例化为对象,或嵌入模板内部结构中,或在模板内又派生了子类。不管怎样,最终他们在模板内,直接或间接,都实例化成对象了。 但这不是唯一的用法。试想一下。如果在模板内限制调用参数类型的构造函数会发生什么?参数类的对象在模板内无法构造。他们只能从模板的成员函数传入。模板不保存这些对象或者只保存他们的指针。因为构造函数被分离,这些指针在模板外

Tolua使用笔记(上)

目录   1.准备工作 2.运行例子 01.HelloWorld:在C#中,创建和销毁Lua虚拟机 和 简单调用。 02.ScriptsFromFile:在C#中,对一个lua文件的执行调用 03.CallLuaFunction:在C#中,对lua函数的操作 04.AccessingLuaVariables:在C#中,对lua变量的操作 05.LuaCoroutine:在Lua中,

C++工程编译链接错误汇总VisualStudio

目录 一些小的知识点 make工具 可以使用windows下的事件查看器崩溃的地方 dumpbin工具查看dll是32位还是64位的 _MSC_VER .cc 和.cpp 【VC++目录中的包含目录】 vs 【C/C++常规中的附加包含目录】——头文件所在目录如何怎么添加,添加了以后搜索头文件就会到这些个路径下搜索了 include<> 和 include"" WinMain 和

Javascript高级程序设计(第四版)--学习记录之变量、内存

原始值与引用值 原始值:简单的数据即基础数据类型,按值访问。 引用值:由多个值构成的对象即复杂数据类型,按引用访问。 动态属性 对于引用值而言,可以随时添加、修改和删除其属性和方法。 let person = new Object();person.name = 'Jason';person.age = 42;console.log(person.name,person.age);//'J

Vim使用基础篇

本文内容大部分来自 vimtutor,自带的教程的总结。在终端输入vimtutor 即可进入教程。 先总结一下,然后再分别介绍正常模式,插入模式,和可视模式三种模式下的命令。 目录 看完以后的汇总 1.正常模式(Normal模式) 1.移动光标 2.删除 3.【:】输入符 4.撤销 5.替换 6.重复命令【. ; ,】 7.复制粘贴 8.缩进 2.插入模式 INSERT

C/C++的编译和链接过程

目录 从源文件生成可执行文件(书中第2章) 1.Preprocessing预处理——预处理器cpp 2.Compilation编译——编译器cll ps:vs中优化选项设置 3.Assembly汇编——汇编器as ps:vs中汇编输出文件设置 4.Linking链接——链接器ld 符号 模块,库 链接过程——链接器 链接过程 1.简单链接的例子 2.链接过程 3.地址和

C++必修:模版的入门到实践

✨✨ 欢迎大家来到贝蒂大讲堂✨✨ 🎈🎈养成好习惯,先赞后看哦~🎈🎈 所属专栏:C++学习 贝蒂的主页:Betty’s blog 1. 泛型编程 首先让我们来思考一个问题,如何实现一个交换函数? void swap(int& x, int& y){int tmp = x;x = y;y = tmp;} 相信大家很快就能写出上面这段代码,但是如果要求这个交换函数支持字符型