STM32应用开发——使用PWM+DMA驱动WS2812

2024-04-03 08:52

本文主要是介绍STM32应用开发——使用PWM+DMA驱动WS2812,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

STM32应用开发——使用PWM+DMA驱动WS2812

目录

  • STM32应用开发——使用PWM+DMA驱动WS2812
    • 前言
    • 1 硬件介绍
      • 1.1 WS2812介绍
        • 1.1.1 芯片简介
        • 1.1.2 引脚描述
        • 1.1.3 工作原理
        • 1.1.4 时序
        • 1.1.5 传输协议
      • 1.2 电路设计
    • 2 软件编程
      • 2.1 软件原理
      • 2.2 测试代码
        • 2.2.1 底层驱动
        • 2.2.2 灯效应用
      • 2.3 运行测试
        • 2.3.1 时序测试
        • 2.3.2 实际效果
    • 结束语

前言

串行灯带的应用十分广泛,其中以WS2812最为经典,这种灯带一般都是通过单总线的方式来驱动,也就是由一根数据线按照特定的时序输出,继而驱动灯带。这种方式在硬件和软件上都非常简单,但是如果软件用GPIO模拟时序的话比较占用主线程的资源,因此,如果能用硬件外设(比如PWM、SPI、串口)来模拟出这个时序,就能节省MCU的资源。
本文以PWM+DMA为例介绍如何驱动WS2812。

1 硬件介绍

1.1 WS2812介绍

1.1.1 芯片简介

WS2812是一款智能控制LED光源,其外观采用最新的MOLDING封装技术、控制电路和RGB芯片集成在2020组件的封装中。其内部包括智能数字端口数据锁存和信号整形放大驱动电路。还包括精密内部振荡器和电压可编程恒流控制部分,有效保证像素点光源的颜色。

1.1.2 引脚描述
引脚名称描述
DO数据输出控制数据输出到下一个芯片
GND电源负极
DI数据输入控制数据输入
VDD电源电源正极
1.1.3 工作原理

通过级联法把每个灯的DI和DO引脚首尾相连,数据可以从第一个IC开始,不断的传输到后面每一个IC,从而实现整条灯带的控制。
在这里插入图片描述

1.1.4 时序

WS2812通过不同的时序来表示0码1码复位码,如下图所示:
在这里插入图片描述
其中各信号的电平如下图所示:
在这里插入图片描述
注:不同型号的芯片在时序上会有点差异,具体以芯片数据手册为准。

1.1.5 传输协议

传输过程如下图所示:
在这里插入图片描述

每一个灯珠的RGB数据排列如下:
在这里插入图片描述

1.2 电路设计

WS2812的控制方法很简单,每个灯珠首尾相接进行级联即可,如下图所示:
在这里插入图片描述
其中,第一个灯珠的DI引脚接入到MCU的一个GPIO上面。

我这里使用STM32F103来作为主控MCU,引脚接线如下:

MCU引脚灯带引脚描述
PA0DI由MCU发送控制信号输入到灯带

2 软件编程

2.1 软件原理

通过DMA可以精确控制PWM输出的每一个方波,然后通过调整占空比,就可以输出0码1码复位码,从而实现灯珠的驱动。
举个例子:按照上面的手册的时序要求,每一个逻辑电平周期在1.25us左右,也就是800kHz,那么PWM输出的频率就可以设置为800kHz。此时改变PWM的占空比,就可以区分编码“0”和编码“1”,比如编码“0”的高电平脉宽和低电平脉宽分别为0.4us和0.85us,那么对应的PWM占空比就是32%和68%,然后通过DMNA连续传输RGB数据就可以实现灯带的颜色和亮度控制。

测试电平时序如下:

逻辑电平脉宽PWM占空比
逻辑0高电平0.40±0.15us32%
逻辑0低电平0.85±0.15us68%
逻辑1高电平0.85±0.15us68%
逻辑1低电平0.40±0.15us32%
复位低电平1.25±0.60us0%

2.2 测试代码

根据上述原理,编写测试代码。

2.2.1 底层驱动

ws2812_driver.h :

#ifndef __WS2812_DRIVER_H
#define __WS2812_DRIVER_H#include "stm32f10x.h"
#include "stm32f10x_conf.h"#define TIM2_CCR1_Address 0x40000034  // stm32 tim2 base address offset 0x34#define LED_NUM     8    // LED的数量
#define RGB_BIT     24   // 每个灯有24bit的RGB数据,依次按G R B排列#define RESET_WORD  5    // 在传输RGB数据前保持一段低电平
#define DUMMY_WORD  5    // 在传输RGB数据后保持一段低电平#define TIMING_0    29   // T0H(32%) = 1.25us * (29 / 90) = 0.40us, T0L(68%) = 1.25 - 0.40 = 0.85us 
#define TIMING_1    61   // T1H(68%) = 1.25us * (61 / 90) = 0.85us, T1L(32%) = 1.25 - 0.85 = 0.40us void led_display(uint8_t (*led_buf)[3], uint8_t led_num);
void ws2812_init(void);#endif

ws2812_driver.c :

#include "ws2812_driver.h"
#include "string.h"uint16_t pwm_dma_buf[RESET_WORD + RGB_BIT * LED_NUM + DUMMY_WORD];void pwm_init(void)
{GPIO_InitTypeDef GPIO_InitStructure;TIM_TimeBaseInitTypeDef  TIM_TimeBaseStructure;TIM_OCInitTypeDef  TIM_OCInitStructure;RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA | RCC_APB2Periph_AFIO, ENABLE);GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0;			GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;GPIO_Init(GPIOA, &GPIO_InitStructure);GPIO_ResetBits(GPIOA, GPIO_Pin_0);RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE);TIM_TimeBaseStructure.TIM_Period = 90 - 1;     // 72MHz / 90 = 800kHzTIM_TimeBaseStructure.TIM_Prescaler = 0;TIM_TimeBaseStructure.TIM_ClockDivision = TIM_CKD_DIV1;TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;TIM_TimeBaseInit(TIM2, &TIM_TimeBaseStructure);/* PWM2 Mode configuration: Channel1 */TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1;TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;TIM_OCInitStructure.TIM_Pulse = 50;TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;TIM_OCInitStructure.TIM_OCIdleState = TIM_OCIdleState_Reset;TIM_OC1Init(TIM2, &TIM_OCInitStructure);TIM_OC1PreloadConfig(TIM2, TIM_OCPreload_Enable);// TIM_ARRPreloadConfig(TIM2, ENABLE);/* TIM2 enable counter */TIM_Cmd(TIM2, ENABLE);
}void pwm_dma_init(void)
{/* configure DMA */DMA_InitTypeDef DMA_InitStructure;//定义DMA初始化结构体/* DMA clock enable */RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA1, ENABLE);	//使能DMA时钟(用于SPI的数据传输)memset((uint8_t*)&pwm_dma_buf, 0, sizeof(pwm_dma_buf));/* DMA1 Channel5 Config for PWM2 by TIM2_CH1*/DMA_DeInit(DMA1_Channel5);DMA_InitStructure.DMA_PeripheralBaseAddr = (uint32_t)TIM2_CCR1_Address;	// physical address of Timer 3 CCR1DMA_InitStructure.DMA_MemoryBaseAddr = (uint32_t)&pwm_dma_buf;		// this is the buffer memory DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralDST;						// data shifted from memory to peripheralDMA_InitStructure.DMA_BufferSize = sizeof(pwm_dma_buf)/2;DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable;DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable;					// automatically increase buffer indexDMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_HalfWord;DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_HalfWord;DMA_InitStructure.DMA_Mode = DMA_Mode_Normal;							// stop DMA feed after buffer size is reachedDMA_InitStructure.DMA_Priority = DMA_Priority_Medium;DMA_InitStructure.DMA_M2M = DMA_M2M_Disable;DMA_Init(DMA1_Channel5, &DMA_InitStructure);/* TIM2 DMA Request enable */TIM_DMACmd(TIM2, TIM_DMA_CC1, ENABLE);TIM_DMACmd(TIM2, TIM_DMA_Update, ENABLE);
}void pwm_dma_send(void)
{DMA_SetCurrDataCounter(DMA1_Channel5, sizeof(pwm_dma_buf)/2); 	// load number of bytes to be transferredDMA_Cmd(DMA1_Channel5, ENABLE); 			// enable DMA channel 5TIM_Cmd(TIM2, ENABLE); 						// enable Timer 2while(!DMA_GetFlagStatus(DMA1_FLAG_TC5)) ; 	// wait until transfer completeDMA_Cmd(DMA1_Channel5, DISABLE); 			// disable DMA channel 5DMA_ClearFlag(DMA1_FLAG_TC5); 				// clear DMA1 Channel 5 transfer complete flagTIM_Cmd(TIM2, DISABLE); 	// disable Timer 2
}void led_display(uint8_t (*led_buf)[3], uint8_t led_num)
{uint8_t i, j;// led_buf -> pwm_dma_buffor(i = 0; i < led_num; i++){// N ledfor(j = 0; j < 8; j++){// 1 color -> 8bit// gpwm_dma_buf[RESET_WORD+RGB_BIT*i+j] = ((led_buf[i][1] << j) & 0x80) ? TIMING_1 : TIMING_0;// rpwm_dma_buf[RESET_WORD+RGB_BIT*i+j+8] = ((led_buf[i][0] << j) & 0x80) ? TIMING_1 : TIMING_0;// bpwm_dma_buf[RESET_WORD+RGB_BIT*i+j+16] = ((led_buf[i][2] << j) & 0x80) ? TIMING_1 : TIMING_0;}}// pwm startpwm_dma_send();
}void ws2812_init(void)
{pwm_init();pwm_dma_init();
}
2.2.2 灯效应用

ws2812_app.h :

#ifndef __WS2812_APP_H
#define __WS2812_APP_H#include "stm32f10x.h"
#include "stm32f10x_conf.h"
#include "ws2812_driver.h"typedef enum 
{LED_MODE_OFF,LED_MODE_ALL_ON,	LED_MODE_BREATHE,	LED_MODE_GRADIENT,LED_MODE_FLOW,	
}led_mode_t;typedef struct
{led_mode_t mode;  uint8_t g;                uint8_t r;              uint8_t b;              uint8_t brightness;  
}led_t;void led_init(void);
void led_handle(void);#endif

ws2812_app.c :

#include "ws2812_app.h"led_t led;
uint8_t rgb_buf[LED_NUM][3];void led_init(void)
{ws2812_init();led.mode = LED_MODE_ALL_ON;led.r = 0x00;led.g = 0xE0;led.b = 0x80;
}void led_handle(void)
{uint8_t i;switch (led.mode){case LED_MODE_OFF:for (i = 0; i < LED_NUM; i++){rgb_buf[i][0] = 0;  // rrgb_buf[i][1] = 0;  // grgb_buf[i][2] = 0;  // b}break;case LED_MODE_ALL_ON:for (i = 0; i < LED_NUM; i++){rgb_buf[i][0] = led.r;  // rrgb_buf[i][1] = led.g;  // grgb_buf[i][2] = led.b;  // b}break;// ......可以自己加入更多的灯效default:break;}led_display(rgb_buf, LED_NUM);
}

main.c :

#include "sys.h"
#include "delay.h"
#include "usart.h"
#include "ws2812_app.h"int main(void)
{SystemInit();delay_init();led_init();while(1){led_handle();delay_ms(5);}
}

2.3 运行测试

2.3.1 时序测试

使用逻辑分析仪抓取信号,得到的结果如下:

  1. 8个LED连续写入RGB值:
    在这里插入图片描述

  2. 编码1高电平(T1H)850ns:
    在这里插入图片描述

  3. 编码1低电平(T1L)400ns:
    在这里插入图片描述

  4. 编码1周期1.25us:
    在这里插入图片描述

  5. 编码0高电平(T0H)400ns:
    在这里插入图片描述

  6. 编码0高电平(T0H)850ns:
    在这里插入图片描述

  7. 编码0周期1.25us:
    在这里插入图片描述

结论:实际输出的波形和理论一致。

2.3.2 实际效果

用在线颜色选取器把代码设置的颜色值输入进去,得到该颜色,然后和实际灯带点亮的颜色比对。

  1. 颜色拾取器显示如下:
    在这里插入图片描述
  2. 实际灯带颜色如下:
    在这里插入图片描述

结论:灯带实际显示的颜色准确无误。

结束语

关于stm32如何使用PWM+DMA驱动WS2812的讲解就到这里,如果还有什么问题,欢迎在评论区留言。

源码下载链接

如果这篇文章能够帮到你,就…你懂的。
在这里插入图片描述

这篇关于STM32应用开发——使用PWM+DMA驱动WS2812的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/872463

相关文章

基于Python开发PDF转Doc格式小程序

《基于Python开发PDF转Doc格式小程序》这篇文章主要为大家详细介绍了如何基于Python开发PDF转Doc格式小程序,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 用python实现PDF转Doc格式小程序以下是一个使用Python实现PDF转DOC格式的GUI程序,采用T

Python使用PIL库将PNG图片转换为ICO图标的示例代码

《Python使用PIL库将PNG图片转换为ICO图标的示例代码》在软件开发和网站设计中,ICO图标是一种常用的图像格式,特别适用于应用程序图标、网页收藏夹图标等场景,本文将介绍如何使用Python的... 目录引言准备工作代码解析实践操作结果展示结语引言在软件开发和网站设计中,ICO图标是一种常用的图像

使用Java发送邮件到QQ邮箱的完整指南

《使用Java发送邮件到QQ邮箱的完整指南》在现代软件开发中,邮件发送功能是一个常见的需求,无论是用户注册验证、密码重置,还是系统通知,邮件都是一种重要的通信方式,本文将详细介绍如何使用Java编写程... 目录引言1. 准备工作1.1 获取QQ邮箱的SMTP授权码1.2 添加JavaMail依赖2. 实现

MyBatis与其使用方法示例详解

《MyBatis与其使用方法示例详解》MyBatis是一个支持自定义SQL的持久层框架,通过XML文件实现SQL配置和数据映射,简化了JDBC代码的编写,本文给大家介绍MyBatis与其使用方法讲解,... 目录ORM缺优分析MyBATisMyBatis的工作流程MyBatis的基本使用环境准备MyBati

使用Python开发一个图像标注与OCR识别工具

《使用Python开发一个图像标注与OCR识别工具》:本文主要介绍一个使用Python开发的工具,允许用户在图像上进行矩形标注,使用OCR对标注区域进行文本识别,并将结果保存为Excel文件,感兴... 目录项目简介1. 图像加载与显示2. 矩形标注3. OCR识别4. 标注的保存与加载5. 裁剪与重置图像

使用Python实现表格字段智能去重

《使用Python实现表格字段智能去重》在数据分析和处理过程中,数据清洗是一个至关重要的步骤,其中字段去重是一个常见且关键的任务,下面我们看看如何使用Python进行表格字段智能去重吧... 目录一、引言二、数据重复问题的常见场景与影响三、python在数据清洗中的优势四、基于Python的表格字段智能去重

Spring AI集成DeepSeek三步搞定Java智能应用的详细过程

《SpringAI集成DeepSeek三步搞定Java智能应用的详细过程》本文介绍了如何使用SpringAI集成DeepSeek,一个国内顶尖的多模态大模型,SpringAI提供了一套统一的接口,简... 目录DeepSeek 介绍Spring AI 是什么?Spring AI 的主要功能包括1、环境准备2

Spring AI与DeepSeek实战一之快速打造智能对话应用

《SpringAI与DeepSeek实战一之快速打造智能对话应用》本文详细介绍了如何通过SpringAI框架集成DeepSeek大模型,实现普通对话和流式对话功能,步骤包括申请API-KEY、项目搭... 目录一、概述二、申请DeepSeek的API-KEY三、项目搭建3.1. 开发环境要求3.2. mav

使用Apache POI在Java中实现Excel单元格的合并

《使用ApachePOI在Java中实现Excel单元格的合并》在日常工作中,Excel是一个不可或缺的工具,尤其是在处理大量数据时,本文将介绍如何使用ApachePOI库在Java中实现Excel... 目录工具类介绍工具类代码调用示例依赖配置总结在日常工作中,Excel 是一个不可或缺的工http://

Java之并行流(Parallel Stream)使用详解

《Java之并行流(ParallelStream)使用详解》Java并行流(ParallelStream)通过多线程并行处理集合数据,利用Fork/Join框架加速计算,适用于大规模数据集和计算密集... 目录Java并行流(Parallel Stream)1. 核心概念与原理2. 创建并行流的方式3. 适