常用数学公式(不定期更新)

2024-04-03 07:32

本文主要是介绍常用数学公式(不定期更新),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 三角函数公式
  • 导数公式
  • 积分公式
  • 泰勒展开公式

\[ \newcommand{\arccot}{\mathrm{arccot}\,} \newcommand{\arcsec}{\mathrm{arcsec}\,} \newcommand{\arccsc}{\mathrm{arccsc}\,} \newcommand{\d}{\mathrm{d}\,} \]

三角函数公式

\[ \begin{aligned} \sin(A+B)&=\sin A\cos B+\cos A\sin B\\ \sin(A-B)&=\sin A\cos B-\cos A\sin B\\ \cos(A+B)&=\cos A\cos B-\sin A\sin B\\ \cos(A-B)&=\cos A\cos B+\sin A\sin B\\ \sin 2A&=2\sin A\cos A\\ \cos 2A&=\cos^2A-\sin^2A=1-2\sin^2A=2\cos^2A-1\\ \sin\frac{A}{2}&=\sqrt{\frac{1-\cos A}{2}}\\ \cos\frac{A}{2}&=\sqrt{\frac{1+\cos A}{2}}\\ \tan\frac{A}{2}&=\frac{1-\cos A}{\sin A}=\frac{\sin A}{1+\cos A}\\ \sin A+\sin B&=2\sin\frac{A+B}{2}\cos\frac{A-B}{2}\\ \sin A-\sin B&=2\cos\frac{A+B}{2}\sin\frac{A-B}{2}\\ \cos A+\cos B&=2\cos\frac{A+B}{2}\cos\frac{A-B}{2}\\ \cos A-\cos B&=-2\sin\frac{A+B}{2}\sin\frac{A-B}{2}\\ \tan A+\tan B&=\frac{\sin (A+B)}{\cos A\cos B}\\ \sin A\sin B&=\frac{1}{2}[\cos(A+B)-\cos(A-B)]\\ \cos A\cos B&=\frac{1}{2}[\cos(A+B)+\cos(A-B)]\\ \sin A\cos B&=\frac{1}{2}[\sin(A+B)+\sin(A-B)]\\ \end{aligned} \]

\[ \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=2R\\ \cos A=\frac{b^2+c^2-a^2}{2bc} \]

\[ \sin^2A=\frac{1-\cos 2A}{2}\\ \cos^2A=\frac{1+\cos 2A}{2} \]

导数公式

\[ \begin{aligned} (u\pm v)'&=u'\pm v'\\ (uv)'&=u'v+uv'\\ (cu)'&=cu'\\ (\frac{u}{v})'&=\frac{u'v-uv'}{v^2}\\ c'&=0 \end{aligned} \]

\[ \begin{aligned} (x^n)'&=nx^{n-1}\\ (a^x)'&=a^x\ln x\\ (\log_ax)'&=\frac{1}{x\ln a}\\ (\sin x)'&=\cos x\\ (\cos x)'&=-\sin x\\ (\tan x)'&=\sec^2x\\ (\cot x)'&=-\csc^2x\\ (\sec x)'&=\sec x\tan x\\ (\arcsin x)'&=\frac{1}{\sqrt{1-x^2}} \end{aligned} \]

积分公式

\[ \begin{aligned} \int k \d x&=kx+c\\ \int x^n \d x&=\frac{1}{n+1}x^{n+1}+c\\ \int \frac{1}{x}\d x&=\ln |x|+c\\ \int a^x \d x&=\frac{a^x}{\ln a}+c\\ \int \sin x\d x&=-\cos x+c\\ \int \cos x\d x&=\sin x+c\\ \int \sec^2x\d x&=\tan x+c\\ \int \csc^2x\d x&=-\cot x+c\\ \int \sec x\tan x\d x&=\sec x+c\\ \int \cot x\csc x\d x&=\csc x+c\\ \int \frac{1}{\sqrt{1-x^2}}\d x&=\arcsin x+c\\ \int \frac{1}{1+x^2}\d x&=\arctan x+c \end{aligned} \]

泰勒展开公式

\[ f(x)=f(a)+\frac{f'(a)}{1!}(x-a)+\frac{f''(a)}{2!}(x-a)^2+\cdots+\frac{f^{(n)}(a)}{n!}(x-a)^n+\cdots \]

\[ \frac{1}{1-ax}=\sum\limits_{i=0}^\infty a^ix^i \]

转载于:https://www.cnblogs.com/chy-2003/p/11469505.html

这篇关于常用数学公式(不定期更新)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/872284

相关文章

Python的time模块一些常用功能(各种与时间相关的函数)

《Python的time模块一些常用功能(各种与时间相关的函数)》Python的time模块提供了各种与时间相关的函数,包括获取当前时间、处理时间间隔、执行时间测量等,:本文主要介绍Python的... 目录1. 获取当前时间2. 时间格式化3. 延时执行4. 时间戳运算5. 计算代码执行时间6. 转换为指

Python正则表达式语法及re模块中的常用函数详解

《Python正则表达式语法及re模块中的常用函数详解》这篇文章主要给大家介绍了关于Python正则表达式语法及re模块中常用函数的相关资料,正则表达式是一种强大的字符串处理工具,可以用于匹配、切分、... 目录概念、作用和步骤语法re模块中的常用函数总结 概念、作用和步骤概念: 本身也是一个字符串,其中

usb接口驱动异常问题常用解决方案

《usb接口驱动异常问题常用解决方案》当遇到USB接口驱动异常时,可以通过多种方法来解决,其中主要就包括重装USB控制器、禁用USB选择性暂停设置、更新或安装新的主板驱动等... usb接口驱动异常怎么办,USB接口驱动异常是常见问题,通常由驱动损坏、系统更新冲突、硬件故障或电源管理设置导致。以下是常用解决

springboot项目中常用的工具类和api详解

《springboot项目中常用的工具类和api详解》在SpringBoot项目中,开发者通常会依赖一些工具类和API来简化开发、提高效率,以下是一些常用的工具类及其典型应用场景,涵盖Spring原生... 目录1. Spring Framework 自带工具类(1) StringUtils(2) Coll

MySQL更新某个字段拼接固定字符串的实现

《MySQL更新某个字段拼接固定字符串的实现》在MySQL中,我们经常需要对数据库中的某个字段进行更新操作,本文就来介绍一下MySQL更新某个字段拼接固定字符串的实现,感兴趣的可以了解一下... 目录1. 查看字段当前值2. 更新字段拼接固定字符串3. 验证更新结果mysql更新某个字段拼接固定字符串 -

Java String字符串的常用使用方法

《JavaString字符串的常用使用方法》String是JDK提供的一个类,是引用类型,并不是基本的数据类型,String用于字符串操作,在之前学习c语言的时候,对于一些字符串,会初始化字符数组表... 目录一、什么是String二、如何定义一个String1. 用双引号定义2. 通过构造函数定义三、St

MySQL新增字段后Java实体未更新的潜在问题与解决方案

《MySQL新增字段后Java实体未更新的潜在问题与解决方案》在Java+MySQL的开发中,我们通常使用ORM框架来映射数据库表与Java对象,但有时候,数据库表结构变更(如新增字段)后,开发人员可... 目录引言1. 问题背景:数据库与 Java 实体不同步1.1 常见场景1.2 示例代码2. 不同操作

Linux上设置Ollama服务配置(常用环境变量)

《Linux上设置Ollama服务配置(常用环境变量)》本文主要介绍了Linux上设置Ollama服务配置(常用环境变量),Ollama提供了多种环境变量供配置,如调试模式、模型目录等,下面就来介绍一... 目录在 linux 上设置环境变量配置 OllamPOgxSRJfa手动安装安装特定版本查看日志在

Java常用注解扩展对比举例详解

《Java常用注解扩展对比举例详解》:本文主要介绍Java常用注解扩展对比的相关资料,提供了丰富的代码示例,并总结了最佳实践建议,帮助开发者更好地理解和应用这些注解,需要的朋友可以参考下... 目录一、@Controller 与 @RestController 对比二、使用 @Data 与 不使用 @Dat

Mysql中深分页的五种常用方法整理

《Mysql中深分页的五种常用方法整理》在数据量非常大的情况下,深分页查询则变得很常见,这篇文章为大家整理了5个常用的方法,文中的示例代码讲解详细,大家可以根据自己的需求进行选择... 目录方案一:延迟关联 (Deferred Join)方案二:有序唯一键分页 (Cursor-based Paginatio