本文主要是介绍从近两年CVPR文章分析计算机视觉领域的最新热点,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
计算机视觉(Computer Vision)是近十几年来计算机科学中最热门的方向之一,而国际计算机视觉与模式识别大会(Conference on Computer Vision and Pattern Recognition,简称CVPR)绝对是计算机视觉会议中的翘楚。计算机视觉方向的顶级会议CVPR每年都召开,每年CVPR上有哪些让人眼前一亮的研究,又反映出哪些趋势?
1.2014年的CVPR
一、繁荣的深度学习
深度学习(Deep Learning)是当下最热门的方向之一,今年的论文中标题带deep字眼的论文就有16篇(其中oral presentation 4篇——在CVPR等大型会议中,由于论文数量众多,大部分的论文都是以海报的形式作讲演。而大会的委员会在所有其中挑选少量出色的工作(占所有投稿的5%)面对所有研究者演讲)。深度学习热潮爆发以来,诸多研究者都在不懈地努力着,希望能够把它应用于解决计算机视觉的各种任务上,从高层次(high-level)的识别(recognition),分类(classification)到低层次(low-level)的去噪(denoising)。让人不禁联想起当年的稀疏表达(sparse representation)的热潮,而深度学习如今的风靡程度看上去是有过之而无不及。深度学习也有横扫high-level问题的趋势,high-level的很多方向都在被其不断刷新着数据。以往的改进都是1,2个点的增长,如今使用深度学习轻松刷出5,6点,这给很多非深度学习方法研究者巨大的压力。虽说深度学习是大热方向,可计算机视觉界的研究者对深度学习的态度也是很鲜明的两派——支持与观望,也给其他研究趋势带来了一些影响(原因接下来说)。作为强大的特征(feature)学习工具,获得大量的支持与推广自然不必说,很多原本观望的研究者们在目睹深度学习的优秀表现后也都开始投身于此。持观望态度的人们一部分可能仍并不了解深度学习的机理,另外一大部分相信是对深度学习将给计算机视觉带来的贡献持保守态度。虽然笔者赞叹于深度学习的强大能力,可对此也是持保守态度。诚然深度学习作为一个工具异常强大。在给定足够多的训练集的情况下,它可以帮助用户学习到这个任务下的具有很强分辨能力的特征。可是这个训练过程近乎黑箱,学习出的系统也很难给解决的问题带来更深刻的理解。二、为基础模型研究正名
也许因为如此,我认为本次的评奖有些指引方向的感觉。本次大会的最佳论文颁给了研究camera motion和shape recovery关系的文章What Camera Motion Reveals About Shape with Unknown BRDF(single author!), Honorable mention给了利用structured light研究shape的论文3D Shape and Indirect Appearance by Structured Light Transport。这两篇论文都可以算是研究3D几何模型的。不仅评奖如此,计算机视觉领域的前辈也亲自站出来力挺一下基础模型的研究,其中Jean Ponce
这篇关于从近两年CVPR文章分析计算机视觉领域的最新热点的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!