Xception模型详解

2024-04-02 19:28
文章标签 详解 模型 xception

本文主要是介绍Xception模型详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

简介

Xception的名称源自于"Extreme Inception",它是在Inception架构的基础上进行了扩展和改进。Inception架构是Google团队提出的一种经典的卷积神经网络架构,用于解决深度卷积神经网络中的计算和参数增长问题。

与Inception不同,Xception的主要创新在于使用了深度可分离卷积(Depthwise Separable Convolution)来替代传统的卷积操作。深度可分离卷积将卷积操作分解为两个步骤:深度卷积和逐点卷积。

深度卷积是一种在每个输入通道上分别应用卷积核的操作,它可以有效地减少计算量和参数数量。逐点卷积是一种使用1x1卷积核进行通道间的线性组合的操作,用于增加模型的表示能力。通过使用深度可分离卷积,Xception网络能够更加有效地学习特征表示,并在相同计算复杂度下获得更好的性能。

Xception 网络结构

一个标准的Inception模块(Inception V3)

简化后的Inception模块

简化后的Inception的等价结构

采用深度可分离卷积的思想,使 3×3 卷积的数量与 1×1卷积输出通道的数量相等

Xception模型,一共可以分为3个flow,分别是Entry flow、Middle flow、Exit flow。

在这里 Entry 与 Exit 都具有相同的部分,Middle 与这二者有所不同。

Xception模型的pytorch复现

(1)深度可分离卷积

class SeparableConv2d(nn.Module):def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, padding=0, dilation=1, bias=False):super(SeparableConv2d, self).__init__()self.conv = nn.Conv2d(in_channels, in_channels, kernel_size, stride, padding,dilation, groups=in_channels, bias=bias)self.pointwise = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0,dilation=1, groups=1, bias=False)def forward(self, x):x = self.conv(x)x = self.pointwise(x)return x

(2)构建三个flow结构

class EntryFlow(nn.Module):def __init__(self):super(EntryFlow, self).__init__()self.headconv = nn.Sequential(nn.Conv2d(3, 32, 3, 2, bias=False),nn.BatchNorm2d(32),nn.ReLU(inplace=True),nn.Conv2d(32, 64, 3, bias=False),nn.BatchNorm2d(64),nn.ReLU(inplace=True),)self.residual_block1 = nn.Sequential(SeparableConv2d(64, 128, 3, padding=1),nn.BatchNorm2d(128),nn.ReLU(inplace=True),SeparableConv2d(128, 128, 3, padding=1),nn.BatchNorm2d(128),nn.MaxPool2d(3, stride=2, padding=1),)self.residual_block2 = nn.Sequential(nn.ReLU(inplace=True),SeparableConv2d(128, 256, 3, padding=1),nn.BatchNorm2d(256),nn.ReLU(inplace=True),SeparableConv2d(256, 256, 3, padding=1),nn.BatchNorm2d(256),nn.MaxPool2d(3, stride=2, padding=1))self.residual_block3 = nn.Sequential(nn.ReLU(inplace=True),SeparableConv2d(256, 728, 3, padding=1),nn.BatchNorm2d(728),nn.ReLU(inplace=True),SeparableConv2d(728, 728, 3, padding=1),nn.BatchNorm2d(728),nn.MaxPool2d(3, stride=2, padding=1))def shortcut(self, inp, oup):return nn.Sequential(nn.Conv2d(inp, oup, 1, 2, bias=False),nn.BatchNorm2d(oup))def forward(self, x):x = self.headconv(x)residual = self.residual_block1(x)shortcut_block1 = self.shortcut(64, 128)x = residual + shortcut_block1(x)residual = self.residual_block2(x)shortcut_block2 = self.shortcut(128, 256)x = residual + shortcut_block2(x)residual = self.residual_block3(x)shortcut_block3 = self.shortcut(256, 728)x = residual + shortcut_block3(x)return xclass MiddleFlow(nn.Module):def __init__(self):super(MiddleFlow, self).__init__()self.shortcut = nn.Sequential()self.conv1 = nn.Sequential(nn.ReLU(inplace=True),SeparableConv2d(728, 728, 3, padding=1),nn.BatchNorm2d(728),nn.ReLU(inplace=True),SeparableConv2d(728, 728, 3, padding=1),nn.BatchNorm2d(728),nn.ReLU(inplace=True),SeparableConv2d(728, 728, 3, padding=1),nn.BatchNorm2d(728))def forward(self, x):residual = self.conv1(x)input = self.shortcut(x)return input + residualclass ExitFlow(nn.Module):def __init__(self):super(ExitFlow, self).__init__()self.residual_with_exit = nn.Sequential(nn.ReLU(inplace=True),SeparableConv2d(728, 728, 3, padding=1),nn.BatchNorm2d(728),nn.ReLU(inplace=True),SeparableConv2d(728, 1024, 3, padding=1),nn.BatchNorm2d(1024),nn.MaxPool2d(3, stride=2, padding=1))self.endconv = nn.Sequential(SeparableConv2d(1024, 1536, 3, 1, 1),nn.BatchNorm2d(1536),nn.ReLU(inplace=True),SeparableConv2d(1536, 2048, 3, 1, 1),nn.BatchNorm2d(2048),nn.ReLU(inplace=True),nn.AdaptiveAvgPool2d((1, 1)),)def shortcut(self, inp, oup):return nn.Sequential(nn.Conv2d(inp, oup, 1, 2, bias=False),nn.BatchNorm2d(oup))def forward(self, x):residual = self.residual_with_exit(x)shortcut_block = self.shortcut(728, 1024)output = residual + shortcut_block(x)return self.endconv(output)

(3)构建网络(完整代码)

"""
Copyright (c) 2023, Auorui.
All rights reserved.Xception: Deep Learning with Depthwise Separable Convolutions<https://arxiv.org/pdf/1610.02357.pdf>
"""
import torch
import torch.nn as nnclass SeparableConv2d(nn.Module):def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, padding=0, dilation=1, bias=False):super(SeparableConv2d, self).__init__()self.conv = nn.Conv2d(in_channels, in_channels, kernel_size, stride, padding,dilation, groups=in_channels, bias=bias)self.pointwise = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0,dilation=1, groups=1, bias=False)def forward(self, x):x = self.conv(x)x = self.pointwise(x)return xclass EntryFlow(nn.Module):def __init__(self):super(EntryFlow, self).__init__()self.headconv = nn.Sequential(nn.Conv2d(3, 32, 3, 2, bias=False),nn.BatchNorm2d(32),nn.ReLU(inplace=True),nn.Conv2d(32, 64, 3, bias=False),nn.BatchNorm2d(64),nn.ReLU(inplace=True),)self.residual_block1 = nn.Sequential(SeparableConv2d(64, 128, 3, padding=1),nn.BatchNorm2d(128),nn.ReLU(inplace=True),SeparableConv2d(128, 128, 3, padding=1),nn.BatchNorm2d(128),nn.MaxPool2d(3, stride=2, padding=1),)self.residual_block2 = nn.Sequential(nn.ReLU(inplace=True),SeparableConv2d(128, 256, 3, padding=1),nn.BatchNorm2d(256),nn.ReLU(inplace=True),SeparableConv2d(256, 256, 3, padding=1),nn.BatchNorm2d(256),nn.MaxPool2d(3, stride=2, padding=1))self.residual_block3 = nn.Sequential(nn.ReLU(inplace=True),SeparableConv2d(256, 728, 3, padding=1),nn.BatchNorm2d(728),nn.ReLU(inplace=True),SeparableConv2d(728, 728, 3, padding=1),nn.BatchNorm2d(728),nn.MaxPool2d(3, stride=2, padding=1))def shortcut(self, inp, oup):return nn.Sequential(nn.Conv2d(inp, oup, 1, 2, bias=False),nn.BatchNorm2d(oup))def forward(self, x):x = self.headconv(x)residual = self.residual_block1(x)shortcut_block1 = self.shortcut(64, 128)x = residual + shortcut_block1(x)residual = self.residual_block2(x)shortcut_block2 = self.shortcut(128, 256)x = residual + shortcut_block2(x)residual = self.residual_block3(x)shortcut_block3 = self.shortcut(256, 728)x = residual + shortcut_block3(x)return xclass MiddleFlow(nn.Module):def __init__(self):super(MiddleFlow, self).__init__()self.shortcut = nn.Sequential()self.conv1 = nn.Sequential(nn.ReLU(inplace=True),SeparableConv2d(728, 728, 3, padding=1),nn.BatchNorm2d(728),nn.ReLU(inplace=True),SeparableConv2d(728, 728, 3, padding=1),nn.BatchNorm2d(728),nn.ReLU(inplace=True),SeparableConv2d(728, 728, 3, padding=1),nn.BatchNorm2d(728))def forward(self, x):residual = self.conv1(x)input = self.shortcut(x)return input + residualclass ExitFlow(nn.Module):def __init__(self):super(ExitFlow, self).__init__()self.residual_with_exit = nn.Sequential(nn.ReLU(inplace=True),SeparableConv2d(728, 728, 3, padding=1),nn.BatchNorm2d(728),nn.ReLU(inplace=True),SeparableConv2d(728, 1024, 3, padding=1),nn.BatchNorm2d(1024),nn.MaxPool2d(3, stride=2, padding=1))self.endconv = nn.Sequential(SeparableConv2d(1024, 1536, 3, 1, 1),nn.BatchNorm2d(1536),nn.ReLU(inplace=True),SeparableConv2d(1536, 2048, 3, 1, 1),nn.BatchNorm2d(2048),nn.ReLU(inplace=True),nn.AdaptiveAvgPool2d((1, 1)),)def shortcut(self, inp, oup):return nn.Sequential(nn.Conv2d(inp, oup, 1, 2, bias=False),nn.BatchNorm2d(oup))def forward(self, x):residual = self.residual_with_exit(x)shortcut_block = self.shortcut(728, 1024)output = residual + shortcut_block(x)return self.endconv(output)class Xception(nn.Module):def __init__(self, num_classes=1000):super().__init__()self.num_classes = num_classesself.entry_flow = EntryFlow()self.middle_flow = MiddleFlow()self.exit_flow = ExitFlow()self.fc = nn.Linear(2048, num_classes)def forward(self, x):x = self.entry_flow(x)for i in range(8):x = self.middle_flow(x)x = self.exit_flow(x)x = x.view(x.size(0), -1)out = self.fc(x)return outif __name__=='__main__':import torchsummarydevice = 'cuda' if torch.cuda.is_available() else 'cpu'input = torch.ones(2, 3, 224, 224).to(device)net = Xception(num_classes=4)net = net.to(device)out = net(input)print(out)print(out.shape)torchsummary.summary(net, input_size=(3, 224, 224))# Xception Total params: 19,838,076

参考文章

【精读AI论文】Xception ------(Xception: Deep Learning with Depthwise Separable Convolutions)_xception论文-CSDN博客

[ 轻量级网络 ] 经典网络模型4——Xception 详解与复现-CSDN博客

神经网络学习小记录22——Xception模型的复现详解_xception timm-CSDN博客

【卷积神经网络系列】十七、Xception_xception模块-CSDN博客 

这篇关于Xception模型详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/870847

相关文章

Flutter监听当前页面可见与隐藏状态的代码详解

《Flutter监听当前页面可见与隐藏状态的代码详解》文章介绍了如何在Flutter中使用路由观察者来监听应用进入前台或后台状态以及页面的显示和隐藏,并通过代码示例讲解的非常详细,需要的朋友可以参考下... flutter 可以监听 app 进入前台还是后台状态,也可以监听当http://www.cppcn

C++ Primer 标准库vector示例详解

《C++Primer标准库vector示例详解》该文章主要介绍了C++标准库中的vector类型,包括其定义、初始化、成员函数以及常见操作,文章详细解释了如何使用vector来存储和操作对象集合,... 目录3.3标准库Vector定义和初始化vector对象通列表初始化vector对象创建指定数量的元素值

MyBatis与其使用方法示例详解

《MyBatis与其使用方法示例详解》MyBatis是一个支持自定义SQL的持久层框架,通过XML文件实现SQL配置和数据映射,简化了JDBC代码的编写,本文给大家介绍MyBatis与其使用方法讲解,... 目录ORM缺优分析MyBATisMyBatis的工作流程MyBatis的基本使用环境准备MyBati

Nginx中location实现多条件匹配的方法详解

《Nginx中location实现多条件匹配的方法详解》在Nginx中,location指令用于匹配请求的URI,虽然location本身是基于单一匹配规则的,但可以通过多种方式实现多个条件的匹配逻辑... 目录1. 概述2. 实现多条件匹配的方式2.1 使用多个 location 块2.2 使用正则表达式

spring @EventListener 事件与监听的示例详解

《spring@EventListener事件与监听的示例详解》本文介绍了自定义Spring事件和监听器的方法,包括如何发布事件、监听事件以及如何处理异步事件,通过示例代码和日志,展示了事件的顺序... 目录1、自定义Application Event2、自定义监听3、测试4、源代码5、其他5.1 顺序执行

Java之并行流(Parallel Stream)使用详解

《Java之并行流(ParallelStream)使用详解》Java并行流(ParallelStream)通过多线程并行处理集合数据,利用Fork/Join框架加速计算,适用于大规模数据集和计算密集... 目录Java并行流(Parallel Stream)1. 核心概念与原理2. 创建并行流的方式3. 适

web网络安全之跨站脚本攻击(XSS)详解

《web网络安全之跨站脚本攻击(XSS)详解》:本文主要介绍web网络安全之跨站脚本攻击(XSS)的相关资料,跨站脚本攻击XSS是一种常见的Web安全漏洞,攻击者通过注入恶意脚本诱使用户执行,可能... 目录前言XSS 的类型1. 存储型 XSS(Stored XSS)示例:危害:2. 反射型 XSS(Re

linux本机进程间通信之UDS详解

《linux本机进程间通信之UDS详解》文章介绍了Unix域套接字(UDS)的使用方法,这是一种在同一台主机上不同进程间通信的方式,UDS支持三种套接字类型:SOCK_STREAM、SOCK_DGRA... 目录基础概念本机进程间通信socket实现AF_INET数据收发示意图AF_Unix数据收发流程图A

Go 1.23中Timer无buffer的实现方式详解

《Go1.23中Timer无buffer的实现方式详解》在Go1.23中,Timer的实现通常是通过time包提供的time.Timer类型来实现的,本文主要介绍了Go1.23中Timer无buff... 目录Timer 的基本实现无缓冲区的实现自定义无缓冲 Timer 实现更复杂的 Timer 实现总结在

Vue中动态权限到按钮的完整实现方案详解

《Vue中动态权限到按钮的完整实现方案详解》这篇文章主要为大家详细介绍了Vue如何在现有方案的基础上加入对路由的增、删、改、查权限控制,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、数据库设计扩展1.1 修改路由表(routes)1.2 修改角色与路由权限表(role_routes)二、后端接口设计