KaTex 常用公式编辑

2024-04-01 04:28
文章标签 公式 编辑 常用 katex

本文主要是介绍KaTex 常用公式编辑,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

原文:https://blog.iyatt.com/?p=7854

注:语法上和 Latex 差不多一样,我是因为 WordPress 上使用 WP Githuber MD 插件,才用的 KaTex(插件里面的 LaTex 模块有 bug,无法渲染)

希腊字母

大写代码小写代码
AAα\alpha
BBβ\beta
Γ\Gammaγ\gamma
Δ\Deltaδ\delta
EEϵ\epsilon
ZZζ\zeta
HHη\eta
Θ\Thetaθ\theta
IIι\iota
KKκ\kappa
Λ\Lambdaλ\lambda
MMμ\mu
NNν\nu
Ξ\Xiξ\xi
OOο\omicron
Π\Piπ\pi
PPρ\rho
Σ\Sigmaσ\sigma
TTτ\tau
ΥΥυ\upsilon
Φ\Phiϕ\phi
XXχ\chi
Ψ\Psiψ\psi
Ω\Omegaω\omega

符号

乘 \times × \times ×
除 \div ÷ \div ÷
加减 \pm ± \pm ±
减加 \mp ∓ \mp
偏导数 \partial ∂ \partial
小于 \lt < \lt <
大于 \gt > \gt >
小于等于 \le ≤ \le
大于等于 \ge ≥ \ge
不等于 \ne ≠ \ne =
加 \not 否定,如 \not \lt ≮ \not \lt <
并集 \cup ∪ \cup
交集 \cap ∩ \cap
子集 subset ⊂ \subset ,subseteq ⊊ \subsetneq
差集 \setminus ∖ \setminus
非子集 \subsetneq ⊊ \subsetneq
父集 \supset ⊃ \supset
属于 \in ∈ \in
不属于 \notin ∉ \notin /
空集 \emptyset ∅ \emptyset
空 \varnothing ∅ \varnothing
虚数 i、j \imath ı \imath , \jmath ȷ \jmath
异或 \oplus ⊕ \oplus
同与 \otimes ⊗ \otimes
同或 \odot ⊙ \odot
与 \land ∧ \land
或 \lor ∨ \lor
非 \lnot ¬ \lnot ¬
点乘 \cdot ⋅ \cdot
平均运算符 \overline{x} x ‾ \overline{x} x
向量(单)\vec{x} x ⃗ \vec{x} x
向量(多)\overrightarrow{xy} x y → \overrightarrow{xy} xy
梯度算子 \nabla ∇ \nabla
空格 \ ,比如 a\ b a b a\ b a b
任意 \forall ∀ \forall
存在 \exists ∃ \exists
反斜杠 \backslash \ \backslash \

\to → \to
\rightarrow → \rightarrow
\leftarrow ← \leftarrow
\leftrightarrow ↔ \leftrightarrow
\uparrow ↑ \uparrow
\downarrow ↓ \downarrow
\updownarrow ↕ \updownarrow
\Rightarrow ⇒ \Rightarrow
\Leftarrow ⇐ \Leftarrow
\Leftrightarrow ⇔ \Leftrightarrow
\Uparrow ⇑ \Uparrow
\Downarrow ⇓ \Downarrow
\Updownarrow ⇕ \Updownarrow
长箭头,前面加 long 或 Long,比如 \longrightarrow ⟶ \longrightarrow ,\Longrightarrow ⟹ \Longrightarrow

\twoheadrightarrow ↠ \twoheadrightarrow
\rightarrowtail ↣ \rightarrowtail
\looparrowright ↬ \looparrowright
\curvearrowright ↷ \curvearrowright
\circlearrowright ↻ \circlearrowright
\Rsh ↱ \Rsh
\multimap ⊸ \multimap
\leftrightsquigarrow ↭ \leftrightsquigarrow
\rightsquigarrow ⇝ \rightsquigarrow
\leadsto ⇝ \leadsto
\nearrow ↗ \nearrow
\searrow ↘ \searrow
\swarrow ↙ \swarrow
\nwarrow ↖ \nwarrow
\nleftarrow ↚ \nleftarrow
\nrightarrow ↛ \nrightarrow
\nLeftarrow ⇍ \nLeftarrow
\nRightarrow ⇏ \nRightarrow
\nleftrightarrow ↮ \nleftrightarrow
\nLeftrightarrow ⇎ \nLeftrightarrow
\dashrightarrow ⇢ \dashrightarrow
\dashleftarrow ⇠ \dashleftarrow
\leftleftarrows ⇇ \leftleftarrows
\leftrightarrows ⇆ \leftrightarrows
\twoheadleftarrow ↞ \twoheadleftarrow
\leftarrowtail ↢ \leftarrowtail
\looparrowleft ↫ \looparrowleft
\curvearrowleft ↶ \curvearrowleft
\circlearrowleft ↺ \circlearrowleft
\Lsh ↰ \Lsh
\mapsto ↦ \mapsto
\hookleftarrow ↩ \hookleftarrow
\hookrightarrow ↪ \hookrightarrow
\upharpoonright ↾ \upharpoonright
\upharpoonleft ↿ \upharpoonleft
\downharpoonright ⇂ \downharpoonright
\downharpoonleft ⇃ \downharpoonleft
\leftharpoonup ↼ \leftharpoonup
\rightharpoonup ⇀ \rightharpoonup
\leftharpoondown ↽ \leftharpoondown
\rightharpoondown ⇁ \rightharpoondown
\upuparrows ⇈ \upuparrows
\downdownarrows ⇊ \downdownarrows
\rightrightarrows ⇉ \rightrightarrows
\rightleftarrows ⇄ \rightleftarrows
\rightrightarrows ⇉ \rightrightarrows
\rightleftarrows ⇄ \rightleftarrows
\rightleftharpoons ⇌ \rightleftharpoons
\leftrightharpoons ⇋ \leftrightharpoons

\mapsto ↦ \mapsto
\forall ∀ \forall
\exists ∃ \exists
\top ⊤ \top
\bot ⊥ \bot
\vDash ⊨ \vDash
\star ⋆ \star
\ast ∗ \ast
\bullet ∙ \bullet
约等于 \approx ≈ \approx
波浪号 \sim ∼ \sim
\equiv ≡ \equiv
\prec ≺ \prec
无穷 \infty ∞ \infty
\aleph_o ℵ o \aleph_o o
\aleph_o ℵ o \aleph_o o
\Im ℑ \Im
\Re ℜ \Re
\ldots … \ldots
\cdots ⋯ \cdots
\vdots ⋮ \vdots
\ddots ⋱ \ddots
\hat x x ^ \hat x x^
\widehat {xy} x y ^ \widehat {xy} xy
\dot x x ˙ \dot x x˙
\ddot x x ¨ \ddot x x¨
\dot {\dot x} x ˙ ˙ \dot {\dot x} x˙˙
\mathring{U} U ˚ \mathring{U} U˚

##上下添加公式

\overset{x=9}{=}
= x = 9 \overset{x=9}{=} =x=9

\underset{x=\sin\theta}{=}
= x = sin ⁡ θ \underset{x=\sin\theta}{=} x=sinθ=

\xlongequal[下方公式]{上方公式}
= 下方公式 上方公式 \xlongequal[下方公式]{上方公式} 上方公式 下方公式

上下大括号

\overbrace{a+b+c}^x a + b + c ⏞ x \overbrace{a+b+c}^x a+b+c x

a+\underbrace{b+c}_y a + b + c ⏟ y a+\underbrace{b+c}_y a+y b+c

上下标

A^m_n A n m A_n^m Anm
A_n^m A n m A_n^m Anm
x^2 x 2 x^2 x2
a_n a n a_n an
a_{n+1} a n + 1 a_{n+1} an+1
A{BC} A B C A^{B^C} ABC
{AB}C A B C {A^B}^C ABC

根号

\sqrt{25} 25 \sqrt{25} 25
\sqrt[3]{27} 27 3 \sqrt[3]{27} 327

分式

\frac{a+b}{a-b} a + b a − b \frac{a+b}{a-b} aba+b
\frac{4}{5} 4 5 \frac{4}{5} 54

括号

(), [] 直接使用,{ 和 } 有特殊含义,需要使用 { 和 } 表示。

尖括号使用
\langle ⟨ \langle
\rangle ⟩ \rangle

求和

\sum_{i=1}^n ∑ i = 1 n \sum_{i=1}^n i=1n
\sum_{j=0}^k ∑ j = 0 k \sum_{j=0}^k j=0k

连乘

\prod_{i=0}^nx ∏ i = 0 n \prod_{i=0}^n i=0n

积分

\int_0^x ∫ 0 x \int_0^x 0x
\iint_0^x ∬ 0 x \iint_0^x 0x
\iiint_0^x ∭ 0 x \iiint_0^x 0x

极限

\lim_{x \to \infty}(1 + \frac{1}{x})^x
lim ⁡ x → ∞ ( 1 + 1 x ) x \lim_{x \to \infty}(1 + \frac{1}{x})^x xlim(1+x1)x

换行等号对齐

\begin{aligned}
19&=10+9 \\
&=11+8 \\
&=12+7
\end{aligned}

19 = 10 + 9 = 11 + 8 = 12 + 7 \begin{aligned} 19&=10+9 \\ &=11+8 \\ &=12+7 \end{aligned} 19=10+9=11+8=12+7

分类

f(x)=
\begin{cases}
x+1, &x<0\\
0, &x=0\\
2x-1, &x>0
\end{cases}

f ( x ) = { x + 1 , x < 0 0 , x = 0 2 x − 1 , x > 0 f(x)= \begin{cases} x+1, &x<0\\ 0, &x=0\\ 2x-1, &x>0 \end{cases} f(x)= x+1,0,2x1,x<0x=0x>0

方程组

\left \{
\begin{array}{l} % l 靠左、c 居中、r 靠右
x+y+z=6 \\
2x-y+z=3 \\
x+y-z=0
\end{array}
\right.

{ x + y + z = 6 2 x − y + z = 3 x + y − z = 0 \left \{ \begin{array}{l} x+y+z=6 \\ 2x-y+z=3 \\ x+y-z=0 \end{array} \right. x+y+z=62xy+z=3x+yz=0

多列对齐

\begin{array}{l l} % l 靠左、c 居中、r 靠右
x+y+z=6 & x+y+z=6\\
2x-y+z=3 & 2x-y+z=3 \\
x+y-z=0 & x+y-z=0
\end{array}

x + y + z = 6 x + y + z = 6 2 x − y + z = 3 2 x − y + z = 3 x + y − z = 0 x + y − z = 0 \begin{array}{l l} % l 靠左、c 居中、r 靠右 x+y+z=6 & x+y+z=6\\ 2x-y+z=3 & 2x-y+z=3 \\ x+y-z=0 & x+y-z=0 \end{array} x+y+z=62xy+z=3x+yz=0x+y+z=62xy+z=3x+yz=0

矩阵

\begin{matrix}
1&2&3 \\
4&5&6 \\
7&8&9
\end{matrix}

1 2 3 4 5 6 7 8 9 \begin{matrix} 1&2&3 \\ 4&5&6 \\ 7&8&9 \end{matrix} 147258369

\left \{
\begin{matrix}
1&2&3 \\
4&5&6 \\
7&8&9
\end{matrix}
\right \}

{ 1 2 3 4 5 6 7 8 9 } \left \{ \begin{matrix} 1&2&3 \\ 4&5&6 \\ 7&8&9 \end{matrix} \right \} 147258369

\left |
\begin{matrix}
1&2&3 \\
4&5&6 \\
7&8&9
\end{matrix}
\right |

∣ 1 2 3 4 5 6 7 8 9 ∣ \left | \begin{matrix} 1&2&3 \\ 4&5&6 \\ 7&8&9 \end{matrix} \right | 147258369

\left (
\begin{matrix}
1&2&3 \\
4&5&6 \\
7&8&9
\end{matrix}
\right )

( 1 2 3 4 5 6 7 8 9 ) \left ( \begin{matrix} 1&2&3 \\ 4&5&6 \\ 7&8&9 \end{matrix} \right ) 147258369

上面是使用 \left 和 \right 来添加的左右括号,也可以不用这对符号,将 \begin 和 \end 后面的词分别换为 pmatrix、bmatrix、Bmatrix、vmatrix、Vmatrix,分别对应小括号、中括号、大括号、单竖线、双竖线,如:

\begin{pmatrix}
1&2&3 \\
4&5&6 \\
7&8&9
\end{pmatrix}

( 1 2 3 4 5 6 7 8 9 ) \begin{pmatrix} 1&2&3 \\ 4&5&6 \\ 7&8&9 \end{pmatrix} 147258369

\begin{array} {c c | c} % c 居中,r 右对齐,l 左对齐,竖线为插入竖线的位置
1&2&3 \\
\hline % 插入横线
4&5&6 \\
7&8&9
\end{array}

1 2 3 4 5 6 7 8 9 \begin{array} {c c | c} 1&2&3 \\ \hline 4&5&6 \\ 7&8&9 \end{array} 147258369

表格

\begin{array}{c|lcr}
n & \text{Left} & \text{Center} & \text{Right} \\
\hline
1 & 2 & 1 & 4 \\
4 & 3 & 2 & 1 \\
1.0 & 2.0 & 3000 & 3\times10^5 \\
\end{array}

n Left Center Right 1 2 1 4.0 4 3 2 1 1.0 2.0 3000 3 × 1 0 5 \begin{array}{c|lcr} n & \text{Left} & \text{Center} & \text{Right} \\ \hline 1 & 2 & 1 & 4.0 \\ 4 & 3 & 2 & 1 \\ 1.0 & 2.0 & 3000 & 3\times10^5 \\ \end{array} n141.0Left232.0Center123000Right4.013×105

\begin{array}{|c|c|}
\hline
\text{公式1} & \text{公式2} \\
\hline
\begin{aligned}
a &= b + c \\&= d + e
\end{aligned}
&
\begin{aligned}
f &= g + h \\&= i + j
\end{aligned} \\
\hline
\end{array}

公式1 公式2 a = b + c = d + e f = g + h = i + j \begin{array}{|c|c|} \hline \text{公式1} & \text{公式2} \\ \hline \begin{aligned} a &= b + c \\ &= d + e \end{aligned} & \begin{aligned} f &= g + h \\ &= i + j \end{aligned} \\ \hline \end{array} 公式1a=b+c=d+e公式2f=g+h=i+j

字体

黑板粗体

一般用于表示数学和物理学中的向量或集合

\mathbb{ABCDEFGHIJKLMNOPQRSTUVWXYZ} A B C D E F G H I J K L M N O P Q R S T U V W X Y Z \mathbb{ABCDEFGHIJKLMNOPQRSTUVWXYZ} ABCDEFGHIJKLMNOPQRSTUVWXYZ
\mathbb{abcdefghijklmnopqrstuvwxyz} a b c d e f g h i j k l m n o p q r s t u v w x y z \mathbb{abcdefghijklmnopqrstuvwxyz} abcdefghijklmnopqrstuvwxyz

正粗体

\mathbf{ABCDEFGHIJKLMNOPQRSTUVWXYZ} A B C D E F G H I J K L M N O P Q R S T U V W X Y Z \mathbf{ABCDEFGHIJKLMNOPQRSTUVWXYZ} ABCDEFGHIJKLMNOPQRSTUVWXYZ
\mathbf{abcdefghijklmnopqrstuvwxyz} a b c d e f g h i j k l m n o p q r s t u v w x y z \mathbf{abcdefghijklmnopqrstuvwxyz} abcdefghijklmnopqrstuvwxyz

罗马体

\mathrm{ABCDEFGHIJKLMNOPQRSTUVWXYZ} A B C D E F G H I J K L M N O P Q R S T U V W X Y Z \mathrm{ABCDEFGHIJKLMNOPQRSTUVWXYZ} ABCDEFGHIJKLMNOPQRSTUVWXYZ
\mathrm{abcdefghijklmnopqrstuvwxyz} a b c d e f g h i j k l m n o p q r s t u v w x y z \mathrm{abcdefghijklmnopqrstuvwxyz} abcdefghijklmnopqrstuvwxyz

哥特体

\mathfrak{ABCDEFGHIJKLMNOPQRSTUVWXYZ} A B C D E F G H I J K L M N O P Q R S T U V W X Y Z \mathfrak{ABCDEFGHIJKLMNOPQRSTUVWXYZ} ABCDEFGHIJKLMNOPQRSTUVWXYZ
\mathfrak{abcdefghijklmnopqrstuvwxyz} a b c d e f g h i j k l m n o p q r s t u v w x y z \mathfrak{abcdefghijklmnopqrstuvwxyz} abcdefghijklmnopqrstuvwxyz

打印体

\mathtt{ABCDEFGHIJKLMNOPQRSTUVWXYZ} A B C D E F G H I J K L M N O P Q R S T U V W X Y Z \mathtt{ABCDEFGHIJKLMNOPQRSTUVWXYZ} ABCDEFGHIJKLMNOPQRSTUVWXYZ
\mathtt{abcdefghijklmnopqrstuvwxyz} a b c d e f g h i j k l m n o p q r s t u v w x y z \mathtt{abcdefghijklmnopqrstuvwxyz} abcdefghijklmnopqrstuvwxyz

手写体

\mathcal{ABCDEFGHIJKLMNOPQRSTUVWXYZ} A B C D E F G H I J K L M N O P Q R S T U V W X Y Z \mathcal{ABCDEFGHIJKLMNOPQRSTUVWXYZ} ABCDEFGHIJKLMNOPQRSTUVWXYZ
\mathcal{abcdefghijklmnopqrstuvwxyz} a b c d e f g h i j k l m n o p q r s t u v w x y z \mathcal{abcdefghijklmnopqrstuvwxyz} abcdefghijklmnopqrstuvwxyz

这篇关于KaTex 常用公式编辑的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/866200

相关文章

Linux上设置Ollama服务配置(常用环境变量)

《Linux上设置Ollama服务配置(常用环境变量)》本文主要介绍了Linux上设置Ollama服务配置(常用环境变量),Ollama提供了多种环境变量供配置,如调试模式、模型目录等,下面就来介绍一... 目录在 linux 上设置环境变量配置 OllamPOgxSRJfa手动安装安装特定版本查看日志在

Java常用注解扩展对比举例详解

《Java常用注解扩展对比举例详解》:本文主要介绍Java常用注解扩展对比的相关资料,提供了丰富的代码示例,并总结了最佳实践建议,帮助开发者更好地理解和应用这些注解,需要的朋友可以参考下... 目录一、@Controller 与 @RestController 对比二、使用 @Data 与 不使用 @Dat

Mysql中深分页的五种常用方法整理

《Mysql中深分页的五种常用方法整理》在数据量非常大的情况下,深分页查询则变得很常见,这篇文章为大家整理了5个常用的方法,文中的示例代码讲解详细,大家可以根据自己的需求进行选择... 目录方案一:延迟关联 (Deferred Join)方案二:有序唯一键分页 (Cursor-based Paginatio

Python实现常用文本内容提取

《Python实现常用文本内容提取》在日常工作和学习中,我们经常需要从PDF、Word文档中提取文本,本文将介绍如何使用Python编写一个文本内容提取工具,有需要的小伙伴可以参考下... 目录一、引言二、文本内容提取的原理三、文本内容提取的设计四、文本内容提取的实现五、完整代码示例一、引言在日常工作和学

Redis中的常用的五种数据类型详解

《Redis中的常用的五种数据类型详解》:本文主要介绍Redis中的常用的五种数据类型详解,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Redis常用的五种数据类型一、字符串(String)简介常用命令应用场景二、哈希(Hash)简介常用命令应用场景三、列表(L

利用Python实现添加或读取Excel公式

《利用Python实现添加或读取Excel公式》Excel公式是数据处理的核心工具,从简单的加减运算到复杂的逻辑判断,掌握基础语法是高效工作的起点,下面我们就来看看如何使用Python进行Excel公... 目录python Excel 库安装Python 在 Excel 中添加公式/函数Python 读取

python中time模块的常用方法及应用详解

《python中time模块的常用方法及应用详解》在Python开发中,时间处理是绕不开的刚需场景,从性能计时到定时任务,从日志记录到数据同步,时间模块始终是开发者最得力的工具之一,本文将通过真实案例... 目录一、时间基石:time.time()典型场景:程序性能分析进阶技巧:结合上下文管理器实现自动计时

C#中的 Dictionary常用操作

《C#中的Dictionary常用操作》C#中的DictionaryTKey,TValue是用于存储键值对集合的泛型类,允许通过键快速检索值,并且具有唯一键、动态大小和无序集合的特性,常用操作包括添... 目录基本概念Dictionary的基本结构Dictionary的主要特性Dictionary的常用操作

Python中常用的四种取整方式分享

《Python中常用的四种取整方式分享》在数据处理和数值计算中,取整操作是非常常见的需求,Python提供了多种取整方式,本文为大家整理了四种常用的方法,希望对大家有所帮助... 目录引言向零取整(Truncate)向下取整(Floor)向上取整(Ceil)四舍五入(Round)四种取整方式的对比综合示例应

C#中读取XML文件的四种常用方法

《C#中读取XML文件的四种常用方法》Xml是Internet环境中跨平台的,依赖于内容的技术,是当前处理结构化文档信息的有力工具,下面我们就来看看C#中读取XML文件的方法都有哪些吧... 目录XML简介格式C#读取XML文件方法使用XmlDocument使用XmlTextReader/XmlTextWr