B样条曲线(记录)

2024-03-31 16:44
文章标签 记录 曲线 样条

本文主要是介绍B样条曲线(记录),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

        B样条曲线的生成靠的两点:

                1、控制点

                2、基函数

        B样条曲线的基函数是一个De Boor的递归表达式[1]:

                B_{i},_{0}(u)=\left\{\begin{matrix} 1, u_{i}\leqslant u\leqslant u_{i+1}\\0, otherwise \end{matrix}\right.                                                                (1)

                B_{i},_{d}(u)=\frac{u-u_{i}}{u_{i+d}-u_{i}}B_{i},_{d-1}(u)+\frac{u_{i+d+1}-u}{u_{i+d+1}-u_{i+1}}B_{i+1},_{d-1}(u)                    (2)

        其中B_{i},_{d}(u)是第id阶基函数。

        而B样条曲线可以表示为[2]:

                P(u)=\sum_{i=0}^{n}p_{i}B_{i},_{d}(u)                                                                        (3)

        如何理解上式?首先,我们知道,如果一个函数在定义域内处处可微(处处连续),则可以通过被泰勒展开成一个多项式级数。换言之,只要阶数足够,对于任意的连续可微曲线,都可以用一个多项式去逼近。B样条曲线的表达式就是一个d阶多项式。它的定义域通过节点区间来表示[1][2]。

        接下来,我们通过一个简单的例子来逐步理解B样条曲线。

        我们以3个控制点的B样条曲线为例。其表达式为:

                P(u)=p_{0}B_{0},_{d}(u)+p_{1}B_{1},_{d}(u)+p_{2}B_{2},_{d}(u)

        现在我们来看一下上式的3个基函数。由式(2),我们可知d-1阶的基函数如下图:

d-1阶基函数的个数为:3\cdot 2-2=4,简单归纳一下:

        设N为控制点的个数,则d阶的基函数个数也为N,而d-1阶的基函数个数为:N\cdot 2-(N-1)=N+1。即低一阶的基函数个数是高一阶加一。则0阶的基函数的个数为:

\left ( \left ( \left ( \left ( \left ( N \right )+1 \right )+1 \right )+1 \right )+...+1 \right )=N+d

        另外,对于多项式的阶,必须小于已知数据点数的个数。于是我们设d=N-1。则0阶的基函数个数为2N-1,为奇数。

        接下来,我们来看看节点区间。对于0阶基函数,一个基函数对应一个节点区间。所以节点区间的个数,我们以3个0阶基函数为例:

为3个区间,共计4个节点,也即节点数为0阶基函数个数加一,即2N个节点。

        另外,当我们选取一个参数u时,由于节点区间不相交,所以我们由式(1)可知0阶基函数,由且只有一个基函数的值为1。其余皆为0。考虑如下情况:

u取在区间[u_{i},u_{i+1})时,我们可以发现在1阶基函数,所有基函数相机等于1。因为0阶基函数只有一个起作用,而其余基函数的值为0.递推到1阶,所有1阶基函数,变为2个基函数起作用。而这两个基函数相加:B_{i-1},_{1}(u)+B_{i},_{1}(u)=\frac{u_{i+1}-u}{u_{i+1}-u_{i}}B_{i},_{0}(u)+\frac{u-u_{i}}{u_{i+1}-u_{i}}B_{i},_{0}(u)=B_{i},_{0}=1

        同理,到了2阶基函数,我们可以得到:

B_{i-2},_{2}(u)+B_{i-1},_{2}(u)=B_{i-1},_{1}(u)           B_{i-1},_{2}(u)+B_{i},_{2}(u)=B_{i},_{1}(u)

也即2阶基函数相加也等于1。以此类推,我们得出一个结论,d阶基函数相加等于1。

        现在来考虑如下的递归过程。假设我们有4个控制点,阶数d=3。于是基函数的传递如下:

假如我们把u取在[u_{0},u_{1})内,则B_{0},_{0}=1,而其余0阶基函数为0。按照以上的结论,我们知道

B_{0},_{0}(u)=B_{-1},_{1}(u)+B_{0},_{1}(u)=1,而实际上,没有B_{-1},_{1}(u)。于是到了1阶,基函数之和不等于1。而且每进一阶,基函数之和都会有损失。

        同时,我们还希望,当u取u=u_{0}或者u=u_{2n-1}时,曲线与控制点0或者控制点n重合。换句话说,就是曲线在端点处与控制点重合,也即B_{0},_{3}(u)=1,而其余3阶基函数等于0。很明显,u=u_{0}无法使以上条件成立。为了实现以上条件,必须解决基函数之和损失的问题。那么u就必须取在区间[u_{3},u_{4})内。当u=u_{3}时,递归到3阶可得B_{0},_{3}(u)=1,而其余为0。当u=u_{4}时,递归到3阶可得B_{3},_{3}(u)=1,而其余为0。因此为了满足基函数之和为1。而且当u取在区间端点时,曲线与控制点重合。我们必须舍弃[u_{3},u_{4})之外的区间。这个操作叫“重复度”。具体的操作是令u_{3}之前的节点都等于u_{3}。而u_{4}之后的节点都等于u_{4}。也即[u_{d},u_{d+1})区间之外,其余区间节点都分别赋值u_{d},u_{d+1}

        例如,原本各区间为[u_{0}=0,u_{1}=1),[u_{1}=1,u_{2}=2),[u_{2}=2,u_{3}=3),[u_{3}=3,u_{4}=4),[u_{4}=4,u_{5}=5),[u_{5}=5,u_{6}=6),[u_{6}=6,u_{7}=7]。进行“重复度”操作后,节点区间变为:[u_{0}=3,u_{1}=3),[u_{1}=3,u_{2}=3),[u_{2}=3,u_{3}=3),[u_{3}=3,u_{4}=4),[u_{4}=4,u_{5}=4),[u_{5}=4,u_{6}=4),[u_{6}=4,u_{7}=4],甚至干脆,我们取u_{3}=0,u_{4}=1

        接下来,我们设\alpha =\frac{u_{i+1}-u}{u_{i+1}-u_{i}},\beta =\frac{u-u_{i}}{u_{i+1}-u_{i}},我们可以得到如下的基函数系数传递图:

则我们可以得到d阶第i个基函数为B_{i},_{d}(u)=Q_{i},_{d}\alpha ^{d-i}\beta ^{i}B_{d},_{0}(u)=Q_{i},_{d}\alpha ^{d-i}\beta ^{i},其中Q_{i},_{d}为如下分布的系数:

以上三角序列为杨辉三角序列,因此Q_{i},_{d}=C^{i}_{d},i\in [0,d]

参考:

1、样条曲线曲面-3:BSpline的原理

2、详解B样条曲线

这篇关于B样条曲线(记录)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/864809

相关文章

关于Spring @Bean 相同加载顺序不同结果不同的问题记录

《关于Spring@Bean相同加载顺序不同结果不同的问题记录》本文主要探讨了在Spring5.1.3.RELEASE版本下,当有两个全注解类定义相同类型的Bean时,由于加载顺序不同,最终生成的... 目录问题说明测试输出1测试输出2@Bean注解的BeanDefiChina编程nition加入时机总结问题说明

将sqlserver数据迁移到mysql的详细步骤记录

《将sqlserver数据迁移到mysql的详细步骤记录》:本文主要介绍将SQLServer数据迁移到MySQL的步骤,包括导出数据、转换数据格式和导入数据,通过示例和工具说明,帮助大家顺利完成... 目录前言一、导出SQL Server 数据二、转换数据格式为mysql兼容格式三、导入数据到MySQL数据

关于rpc长连接与短连接的思考记录

《关于rpc长连接与短连接的思考记录》文章总结了RPC项目中长连接和短连接的处理方式,包括RPC和HTTP的长连接与短连接的区别、TCP的保活机制、客户端与服务器的连接模式及其利弊分析,文章强调了在实... 目录rpc项目中的长连接与短连接的思考什么是rpc项目中的长连接和短连接与tcp和http的长连接短

Oracle查询优化之高效实现仅查询前10条记录的方法与实践

《Oracle查询优化之高效实现仅查询前10条记录的方法与实践》:本文主要介绍Oracle查询优化之高效实现仅查询前10条记录的相关资料,包括使用ROWNUM、ROW_NUMBER()函数、FET... 目录1. 使用 ROWNUM 查询2. 使用 ROW_NUMBER() 函数3. 使用 FETCH FI

Python MySQL如何通过Binlog获取变更记录恢复数据

《PythonMySQL如何通过Binlog获取变更记录恢复数据》本文介绍了如何使用Python和pymysqlreplication库通过MySQL的二进制日志(Binlog)获取数据库的变更记录... 目录python mysql通过Binlog获取变更记录恢复数据1.安装pymysqlreplicat

Servlet中配置和使用过滤器的步骤记录

《Servlet中配置和使用过滤器的步骤记录》:本文主要介绍在Servlet中配置和使用过滤器的方法,包括创建过滤器类、配置过滤器以及在Web应用中使用过滤器等步骤,文中通过代码介绍的非常详细,需... 目录创建过滤器类配置过滤器使用过滤器总结在Servlet中配置和使用过滤器主要包括创建过滤器类、配置过滤

正则表达式高级应用与性能优化记录

《正则表达式高级应用与性能优化记录》本文介绍了正则表达式的高级应用和性能优化技巧,包括文本拆分、合并、XML/HTML解析、数据分析、以及性能优化方法,通过这些技巧,可以更高效地利用正则表达式进行复杂... 目录第6章:正则表达式的高级应用6.1 模式匹配与文本处理6.1.1 文本拆分6.1.2 文本合并6

python与QT联合的详细步骤记录

《python与QT联合的详细步骤记录》:本文主要介绍python与QT联合的详细步骤,文章还展示了如何在Python中调用QT的.ui文件来实现GUI界面,并介绍了多窗口的应用,文中通过代码介绍... 目录一、文章简介二、安装pyqt5三、GUI页面设计四、python的使用python文件创建pytho

Node.js学习记录(二)

目录 一、express 1、初识express 2、安装express 3、创建并启动web服务器 4、监听 GET&POST 请求、响应内容给客户端 5、获取URL中携带的查询参数 6、获取URL中动态参数 7、静态资源托管 二、工具nodemon 三、express路由 1、express中路由 2、路由的匹配 3、路由模块化 4、路由模块添加前缀 四、中间件

记录每次更新到仓库 —— Git 学习笔记 10

记录每次更新到仓库 文章目录 文件的状态三个区域检查当前文件状态跟踪新文件取消跟踪(un-tracking)文件重新跟踪(re-tracking)文件暂存已修改文件忽略某些文件查看已暂存和未暂存的修改提交更新跳过暂存区删除文件移动文件参考资料 咱们接着很多天以前的 取得Git仓库 这篇文章继续说。 文件的状态 不管是通过哪种方法,现在我们已经有了一个仓库,并从这个仓