B样条曲线(记录)

2024-03-31 16:44
文章标签 记录 曲线 样条

本文主要是介绍B样条曲线(记录),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

        B样条曲线的生成靠的两点:

                1、控制点

                2、基函数

        B样条曲线的基函数是一个De Boor的递归表达式[1]:

                B_{i},_{0}(u)=\left\{\begin{matrix} 1, u_{i}\leqslant u\leqslant u_{i+1}\\0, otherwise \end{matrix}\right.                                                                (1)

                B_{i},_{d}(u)=\frac{u-u_{i}}{u_{i+d}-u_{i}}B_{i},_{d-1}(u)+\frac{u_{i+d+1}-u}{u_{i+d+1}-u_{i+1}}B_{i+1},_{d-1}(u)                    (2)

        其中B_{i},_{d}(u)是第id阶基函数。

        而B样条曲线可以表示为[2]:

                P(u)=\sum_{i=0}^{n}p_{i}B_{i},_{d}(u)                                                                        (3)

        如何理解上式?首先,我们知道,如果一个函数在定义域内处处可微(处处连续),则可以通过被泰勒展开成一个多项式级数。换言之,只要阶数足够,对于任意的连续可微曲线,都可以用一个多项式去逼近。B样条曲线的表达式就是一个d阶多项式。它的定义域通过节点区间来表示[1][2]。

        接下来,我们通过一个简单的例子来逐步理解B样条曲线。

        我们以3个控制点的B样条曲线为例。其表达式为:

                P(u)=p_{0}B_{0},_{d}(u)+p_{1}B_{1},_{d}(u)+p_{2}B_{2},_{d}(u)

        现在我们来看一下上式的3个基函数。由式(2),我们可知d-1阶的基函数如下图:

d-1阶基函数的个数为:3\cdot 2-2=4,简单归纳一下:

        设N为控制点的个数,则d阶的基函数个数也为N,而d-1阶的基函数个数为:N\cdot 2-(N-1)=N+1。即低一阶的基函数个数是高一阶加一。则0阶的基函数的个数为:

\left ( \left ( \left ( \left ( \left ( N \right )+1 \right )+1 \right )+1 \right )+...+1 \right )=N+d

        另外,对于多项式的阶,必须小于已知数据点数的个数。于是我们设d=N-1。则0阶的基函数个数为2N-1,为奇数。

        接下来,我们来看看节点区间。对于0阶基函数,一个基函数对应一个节点区间。所以节点区间的个数,我们以3个0阶基函数为例:

为3个区间,共计4个节点,也即节点数为0阶基函数个数加一,即2N个节点。

        另外,当我们选取一个参数u时,由于节点区间不相交,所以我们由式(1)可知0阶基函数,由且只有一个基函数的值为1。其余皆为0。考虑如下情况:

u取在区间[u_{i},u_{i+1})时,我们可以发现在1阶基函数,所有基函数相机等于1。因为0阶基函数只有一个起作用,而其余基函数的值为0.递推到1阶,所有1阶基函数,变为2个基函数起作用。而这两个基函数相加:B_{i-1},_{1}(u)+B_{i},_{1}(u)=\frac{u_{i+1}-u}{u_{i+1}-u_{i}}B_{i},_{0}(u)+\frac{u-u_{i}}{u_{i+1}-u_{i}}B_{i},_{0}(u)=B_{i},_{0}=1

        同理,到了2阶基函数,我们可以得到:

B_{i-2},_{2}(u)+B_{i-1},_{2}(u)=B_{i-1},_{1}(u)           B_{i-1},_{2}(u)+B_{i},_{2}(u)=B_{i},_{1}(u)

也即2阶基函数相加也等于1。以此类推,我们得出一个结论,d阶基函数相加等于1。

        现在来考虑如下的递归过程。假设我们有4个控制点,阶数d=3。于是基函数的传递如下:

假如我们把u取在[u_{0},u_{1})内,则B_{0},_{0}=1,而其余0阶基函数为0。按照以上的结论,我们知道

B_{0},_{0}(u)=B_{-1},_{1}(u)+B_{0},_{1}(u)=1,而实际上,没有B_{-1},_{1}(u)。于是到了1阶,基函数之和不等于1。而且每进一阶,基函数之和都会有损失。

        同时,我们还希望,当u取u=u_{0}或者u=u_{2n-1}时,曲线与控制点0或者控制点n重合。换句话说,就是曲线在端点处与控制点重合,也即B_{0},_{3}(u)=1,而其余3阶基函数等于0。很明显,u=u_{0}无法使以上条件成立。为了实现以上条件,必须解决基函数之和损失的问题。那么u就必须取在区间[u_{3},u_{4})内。当u=u_{3}时,递归到3阶可得B_{0},_{3}(u)=1,而其余为0。当u=u_{4}时,递归到3阶可得B_{3},_{3}(u)=1,而其余为0。因此为了满足基函数之和为1。而且当u取在区间端点时,曲线与控制点重合。我们必须舍弃[u_{3},u_{4})之外的区间。这个操作叫“重复度”。具体的操作是令u_{3}之前的节点都等于u_{3}。而u_{4}之后的节点都等于u_{4}。也即[u_{d},u_{d+1})区间之外,其余区间节点都分别赋值u_{d},u_{d+1}

        例如,原本各区间为[u_{0}=0,u_{1}=1),[u_{1}=1,u_{2}=2),[u_{2}=2,u_{3}=3),[u_{3}=3,u_{4}=4),[u_{4}=4,u_{5}=5),[u_{5}=5,u_{6}=6),[u_{6}=6,u_{7}=7]。进行“重复度”操作后,节点区间变为:[u_{0}=3,u_{1}=3),[u_{1}=3,u_{2}=3),[u_{2}=3,u_{3}=3),[u_{3}=3,u_{4}=4),[u_{4}=4,u_{5}=4),[u_{5}=4,u_{6}=4),[u_{6}=4,u_{7}=4],甚至干脆,我们取u_{3}=0,u_{4}=1

        接下来,我们设\alpha =\frac{u_{i+1}-u}{u_{i+1}-u_{i}},\beta =\frac{u-u_{i}}{u_{i+1}-u_{i}},我们可以得到如下的基函数系数传递图:

则我们可以得到d阶第i个基函数为B_{i},_{d}(u)=Q_{i},_{d}\alpha ^{d-i}\beta ^{i}B_{d},_{0}(u)=Q_{i},_{d}\alpha ^{d-i}\beta ^{i},其中Q_{i},_{d}为如下分布的系数:

以上三角序列为杨辉三角序列,因此Q_{i},_{d}=C^{i}_{d},i\in [0,d]

参考:

1、样条曲线曲面-3:BSpline的原理

2、详解B样条曲线

这篇关于B样条曲线(记录)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/864809

相关文章

Python获取中国节假日数据记录入JSON文件

《Python获取中国节假日数据记录入JSON文件》项目系统内置的日历应用为了提升用户体验,特别设置了在调休日期显示“休”的UI图标功能,那么问题是这些调休数据从哪里来呢?我尝试一种更为智能的方法:P... 目录节假日数据获取存入jsON文件节假日数据读取封装完整代码项目系统内置的日历应用为了提升用户体验,

Spring Boot 配置文件之类型、加载顺序与最佳实践记录

《SpringBoot配置文件之类型、加载顺序与最佳实践记录》SpringBoot的配置文件是灵活且强大的工具,通过合理的配置管理,可以让应用开发和部署更加高效,无论是简单的属性配置,还是复杂... 目录Spring Boot 配置文件详解一、Spring Boot 配置文件类型1.1 applicatio

MySQL INSERT语句实现当记录不存在时插入的几种方法

《MySQLINSERT语句实现当记录不存在时插入的几种方法》MySQL的INSERT语句是用于向数据库表中插入新记录的关键命令,下面:本文主要介绍MySQLINSERT语句实现当记录不存在时... 目录使用 INSERT IGNORE使用 ON DUPLICATE KEY UPDATE使用 REPLACE

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

Spring Boot中定时任务Cron表达式的终极指南最佳实践记录

《SpringBoot中定时任务Cron表达式的终极指南最佳实践记录》本文详细介绍了SpringBoot中定时任务的实现方法,特别是Cron表达式的使用技巧和高级用法,从基础语法到复杂场景,从快速启... 目录一、Cron表达式基础1.1 Cron表达式结构1.2 核心语法规则二、Spring Boot中定

国内环境搭建私有知识问答库踩坑记录(ollama+deepseek+ragflow)

《国内环境搭建私有知识问答库踩坑记录(ollama+deepseek+ragflow)》本文给大家利用deepseek模型搭建私有知识问答库的详细步骤和遇到的问题及解决办法,感兴趣的朋友一起看看吧... 目录1. 第1步大家在安装完ollama后,需要到系统环境变量中添加两个变量2. 第3步 “在cmd中

Spring Retry 实现乐观锁重试实践记录

《SpringRetry实现乐观锁重试实践记录》本文介绍了在秒杀商品SKU表中使用乐观锁和MybatisPlus配置乐观锁的方法,并分析了测试环境和生产环境的隔离级别对乐观锁的影响,通过简单验证,... 目录一、场景分析 二、简单验证 2.1、可重复读 2.2、读已提交 三、最佳实践 3.1、配置重试模板

在 Spring Boot 中使用异步线程时的 HttpServletRequest 复用问题记录

《在SpringBoot中使用异步线程时的HttpServletRequest复用问题记录》文章讨论了在SpringBoot中使用异步线程时,由于HttpServletRequest复用导致... 目录一、问题描述:异步线程操作导致请求复用时 Cookie 解析失败1. 场景背景2. 问题根源二、问题详细分

关于Spring @Bean 相同加载顺序不同结果不同的问题记录

《关于Spring@Bean相同加载顺序不同结果不同的问题记录》本文主要探讨了在Spring5.1.3.RELEASE版本下,当有两个全注解类定义相同类型的Bean时,由于加载顺序不同,最终生成的... 目录问题说明测试输出1测试输出2@Bean注解的BeanDefiChina编程nition加入时机总结问题说明