并发容器之BlockingQueue详解

2024-03-31 15:38

本文主要是介绍并发容器之BlockingQueue详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • BlockingQueue简介
    • 基本操作
    • 常用的BlockingQueue

BlockingQueue简介

在实际编程中,会经常使用到JDK中Collection集合框架中的各种容器类如实现List,Map,Queue接口的容器类,但是这些容器类基本上不是线程安全的,除了使用Collections可以将其转换为线程安全的容器,Doug Lea大师为我们都准备了对应的线程安全的容器,如实现List接口的CopyOnWriteArrayList(关于CopyOnWriteArrayList可以看这篇文章),实现Map接口的ConcurrentHashMap(关于ConcurrentHashMap可以看这篇文章),实现Queue接口的ConcurrentLinkedQueue(关于ConcurrentLinkedQueue可以看这篇文章)。

最常用的"生产者-消费者"问题中,队列通常被视作线程间操作的数据容器,这样,可以对各个模块的业务功能进行解耦,生产者将“生产”出来的数据放置在数据容器中,而消费者仅仅只需要在“数据容器”中进行获取数据即可,这样生产者线程和消费者线程就能够进行解耦,只专注于自己的业务功能即可。阻塞队列(BlockingQueue)被广泛使用在“生产者-消费者”问题中,其原因是BlockingQueue提供了可阻塞的插入和移除的方法。当队列容器已满,生产者线程会被阻塞,直到队列未满;当队列容器为空时,消费者线程会被阻塞,直至队列非空时为止。

基本操作

BlockingQueue基本操作总结如下(此图来源于JAVA API文档):

在这里插入图片描述

BlockingQueue继承于Queue接口,因此,对数据元素的基本操作有:

插入元素

  1. add(E e) :往队列插入数据,当队列满时,插入元素时会抛出IllegalStateException异常;

  2. offer(E e):当往队列插入数据时,插入成功返回true,否则则返回false。当队列满时不会抛出异常;

删除元素

  1. remove(Object o):从队列中删除数据,成功则返回true,否则为false

  2. poll:删除数据,当队列为空时,返回null;

查看元素

  1. element:获取队头元素,如果队列为空时则抛出NoSuchElementException异常;
  2. peek:获取队头元素,如果队列为空则抛出NoSuchElementException异常

BlockingQueue具有的特殊操作:

插入数据:

  1. put:当阻塞队列容量已经满时,往阻塞队列插入数据的线程会被阻塞,直至阻塞队列已经有空余的容量可供使用;

  2. offer(E e, long timeout, TimeUnit unit):若阻塞队列已经满时,同样会阻塞插入数据的线程,直至阻塞队列已经有空余的地方,与put方法不同的是,该方法会有一个超时时间,若超过当前给定的超时时间,插入数据的线程会退出;

删除数据

  1. take():当阻塞队列为空时,获取队头数据的线程会被阻塞;
  2. poll(long timeout, TimeUnit unit):当阻塞队列为空时,获取数据的线程会被阻塞,另外,如果被阻塞的线程超过了给定的时长,该线程会退出

常用的BlockingQueue

实现BlockingQueue接口的有ArrayBlockingQueue, DelayQueue, LinkedBlockingDeque, LinkedBlockingQueue, LinkedTransferQueue, PriorityBlockingQueue, SynchronousQueue,而这几种常见的阻塞队列也是在实际编程中会常用的,下面对这几种常见的阻塞队列进行说明:

1.ArrayBlockingQueue

ArrayBlockingQueue是由数组实现的有界阻塞队列。该队列命令元素FIFO(先进先出)。因此,对头元素时队列中存在时间最长的数据元素,而对尾数据则是当前队列最新的数据元素。ArrayBlockingQueue可作为“有界数据缓冲区”,生产者插入数据到队列容器中,并由消费者提取。ArrayBlockingQueue一旦创建,容量不能改变。

当队列容量满时,尝试将元素放入队列将导致操作阻塞;尝试从一个空队列中取一个元素也会同样阻塞。

ArrayBlockingQueue默认情况下不能保证线程访问队列的公平性,所谓公平性是指严格按照线程等待的绝对时间顺序,即最先等待的线程能够最先访问到ArrayBlockingQueue。而非公平性则是指访问ArrayBlockingQueue的顺序不是遵守严格的时间顺序,有可能存在,一旦ArrayBlockingQueue可以被访问时,长时间阻塞的线程依然无法访问到ArrayBlockingQueue。如果保证公平性,通常会降低吞吐量。如果需要获得公平性的ArrayBlockingQueue,可采用如下代码:

private static ArrayBlockingQueue<Integer> blockingQueue = new ArrayBlockingQueue<Integer>(10,true);

关于ArrayBlockingQueue的实现原理,可以看这篇文章。

2.LinkedBlockingQueue

LinkedBlockingQueue是用链表实现的有界阻塞队列,同样满足FIFO的特性,与ArrayBlockingQueue相比起来具有更高的吞吐量,为了防止LinkedBlockingQueue容量迅速增,损耗大量内存。通常在创建LinkedBlockingQueue对象时,会指定其大小,如果未指定,容量等于Integer.MAX_VALUE

3.PriorityBlockingQueue

PriorityBlockingQueue是一个支持优先级的无界阻塞队列。默认情况下元素采用自然顺序进行排序,也可以通过自定义类实现compareTo()方法来指定元素排序规则,或者初始化时通过构造器参数Comparator来指定排序规则。

4.SynchronousQueue

SynchronousQueue每个插入操作必须等待另一个线程进行相应的删除操作,因此,SynchronousQueue实际上没有存储任何数据元素,因为只有线程在删除数据时,其他线程才能插入数据,同样的,如果当前有线程在插入数据时,线程才能删除数据。SynchronousQueue也可以通过构造器参数来为其指定公平性。

5.LinkedTransferQueue

LinkedTransferQueue是一个由链表数据结构构成的无界阻塞队列,由于该队列实现了TransferQueue接口,与其他阻塞队列相比主要有以下不同的方法:

transfer(E e)
如果当前有线程(消费者)正在调用take()方法或者可延时的poll()方法进行消费数据时,生产者线程可以调用transfer方法将数据传递给消费者线程。如果当前没有消费者线程的话,生产者线程就会将数据插入到队尾,直到有消费者能够进行消费才能退出;

tryTransfer(E e)
tryTransfer方法如果当前有消费者线程(调用take方法或者具有超时特性的poll方法)正在消费数据的话,该方法可以将数据立即传送给消费者线程,如果当前没有消费者线程消费数据的话,就立即返回false。因此,与transfer方法相比,transfer方法是必须等到有消费者线程消费数据时,生产者线程才能够返回。而tryTransfer方法能够立即返回结果退出。

tryTransfer(E e,long timeout,imeUnit unit)
与transfer基本功能一样,只是增加了超时特性,如果数据才规定的超时时间内没有消费者进行消费的话,就返回false

6.LinkedBlockingDeque

LinkedBlockingDeque是基于链表数据结构的有界阻塞双端队列,如果在创建对象时为指定大小时,其默认大小为Integer.MAX_VALUE。与LinkedBlockingQueue相比,主要的不同点在于,LinkedBlockingDeque具有双端队列的特性。LinkedBlockingDeque基本操作如下图所示(来源于java文档)

在这里插入图片描述

如上图所示,LinkedBlockingDeque的基本操作可以分为四种类型:1.特殊情况,抛出异常;2.特殊情况,返回特殊值如null或者false;3.当线程不满足操作条件时,线程会被阻塞直至条件满足;4. 操作具有超时特性。

另外,LinkedBlockingDeque实现了BlockingDueue接口而LinkedBlockingQueue实现的是BlockingQueue,这两个接口的主要区别如下图所示(来源于java文档):

在这里插入图片描述

从上图可以看出,两个接口的功能是可以等价使用的,比如BlockingQueue的add方法和BlockingDeque的addLast方法的功能是一样的。

7.DelayQueue

DelayQueue是一个存放实现Delayed接口的数据的无界阻塞队列,只有当数据对象的延时时间达到时才能插入到队列进行存储。如果当前所有的数据都还没有达到创建时所指定的延时期,则队列没有队头,并且线程通过poll等方法获取数据元素则返回null。所谓数据延时期满时,则是通过Delayed接口的getDelay(TimeUnit.NANOSECONDS)来进行判定,如果该方法返回的是小于等于0则说明该数据元素的延时期已满。

这篇关于并发容器之BlockingQueue详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/864680

相关文章

mac中资源库在哪? macOS资源库文件夹详解

《mac中资源库在哪?macOS资源库文件夹详解》经常使用Mac电脑的用户会发现,找不到Mac电脑的资源库,我们怎么打开资源库并使用呢?下面我们就来看看macOS资源库文件夹详解... 在 MACOS 系统中,「资源库」文件夹是用来存放操作系统和 App 设置的核心位置。虽然平时我们很少直接跟它打交道,但了

关于Maven中pom.xml文件配置详解

《关于Maven中pom.xml文件配置详解》pom.xml是Maven项目的核心配置文件,它描述了项目的结构、依赖关系、构建配置等信息,通过合理配置pom.xml,可以提高项目的可维护性和构建效率... 目录1. POM文件的基本结构1.1 项目基本信息2. 项目属性2.1 引用属性3. 项目依赖4. 构

Rust 数据类型详解

《Rust数据类型详解》本文介绍了Rust编程语言中的标量类型和复合类型,标量类型包括整数、浮点数、布尔和字符,而复合类型则包括元组和数组,标量类型用于表示单个值,具有不同的表示和范围,本文介绍的非... 目录一、标量类型(Scalar Types)1. 整数类型(Integer Types)1.1 整数字

Java操作ElasticSearch的实例详解

《Java操作ElasticSearch的实例详解》Elasticsearch是一个分布式的搜索和分析引擎,广泛用于全文搜索、日志分析等场景,本文将介绍如何在Java应用中使用Elastics... 目录简介环境准备1. 安装 Elasticsearch2. 添加依赖连接 Elasticsearch1. 创

Spring核心思想之浅谈IoC容器与依赖倒置(DI)

《Spring核心思想之浅谈IoC容器与依赖倒置(DI)》文章介绍了Spring的IoC和DI机制,以及MyBatis的动态代理,通过注解和反射,Spring能够自动管理对象的创建和依赖注入,而MyB... 目录一、控制反转 IoC二、依赖倒置 DI1. 详细概念2. Spring 中 DI 的实现原理三、

Redis缓存问题与缓存更新机制详解

《Redis缓存问题与缓存更新机制详解》本文主要介绍了缓存问题及其解决方案,包括缓存穿透、缓存击穿、缓存雪崩等问题的成因以及相应的预防和解决方法,同时,还详细探讨了缓存更新机制,包括不同情况下的缓存更... 目录一、缓存问题1.1 缓存穿透1.1.1 问题来源1.1.2 解决方案1.2 缓存击穿1.2.1

PyTorch使用教程之Tensor包详解

《PyTorch使用教程之Tensor包详解》这篇文章介绍了PyTorch中的张量(Tensor)数据结构,包括张量的数据类型、初始化、常用操作、属性等,张量是PyTorch框架中的核心数据结构,支持... 目录1、张量Tensor2、数据类型3、初始化(构造张量)4、常用操作5、常用属性5.1 存储(st

Python 中 requests 与 aiohttp 在实际项目中的选择策略详解

《Python中requests与aiohttp在实际项目中的选择策略详解》本文主要介绍了Python爬虫开发中常用的两个库requests和aiohttp的使用方法及其区别,通过实际项目案... 目录一、requests 库二、aiohttp 库三、requests 和 aiohttp 的比较四、requ

VUE动态绑定class类的三种常用方式及适用场景详解

《VUE动态绑定class类的三种常用方式及适用场景详解》文章介绍了在实际开发中动态绑定class的三种常见情况及其解决方案,包括根据不同的返回值渲染不同的class样式、给模块添加基础样式以及根据设... 目录前言1.动态选择class样式(对象添加:情景一)2.动态添加一个class样式(字符串添加:情

Python在固定文件夹批量创建固定后缀的文件(方法详解)

《Python在固定文件夹批量创建固定后缀的文件(方法详解)》文章讲述了如何使用Python批量创建后缀为.md的文件夹,生成100个,代码中需要修改的路径、前缀和后缀名,并提供了注意事项和代码示例,... 目录1. python需求的任务2. Python代码的实现3. 代码修改的位置4. 运行结果5.