音视频开发之旅(80)- AI数字人-腾讯开源AniPortrait-音频驱动的肖像动画

本文主要是介绍音视频开发之旅(80)- AI数字人-腾讯开源AniPortrait-音频驱动的肖像动画,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

1、前言

2、效果展示

3、原理学习

4、遇到的问题与解决方案

5、资料

一、前言

一个月前阿里Emo发布,通过音频驱动的非常自然的肖像视频,引起很大反响。具体看下面的视频,但是并没有开源其代码。

这两天腾讯开源了其音频驱动的肖像视频的项目AniPortrait,它也实现了类似功能:音频驱动、参考视频表情动作驱动,或者通过预先生成的pose关键点视频来驱动。

AniPortrait开发者在EMO的issue上留言,哈哈

图片

二、效果展示

效果来看和EMO差距还是蛮大,主要是唇形不自然,官方给出的效果就可用看出唇形特别是牙齿的问题。当使用自己的素材生成时,问题更明显

2.1 官方展示效果

Aragaki

lyl

2.2 自己使用效果

Aragaki

sd

solo

三、原理学习

图片

分为两个阶段:从音频提取关键点信息和从关键点信息生成视频

音频处理阶段(Audio2Lmk)

在这个阶段,系统首先解析音频信号,以抓取驱动动态人脸模型的关键数据。

  1. 音频输入: 包含人声的音频片段

  2. Audio2Pose: 从音频中提取头部姿势信息

  3. Audio2Mesh: 从音频中提取面部网格的变形信息(面部表情变化)

4. Neutral Mesh: 标准的没有任何表情的基础3D面部模型

5. Mesh Offset: 结合音频提取的信息,生成表达特定情绪或语音的目标面部模型。

6. Target Meshes: 经过偏移和调整后得到的一系列面部模型,它们将用来产生动画中人物的表情。

7. Project: 将复杂的3D面部数据转换为2D平面上的点集,为下一步的视频生成做准备。

视频生成阶段(Lmk2Video)

经过第一阶段的处理,得到了可以描述面部动态的2D关键点。在第二阶段,这些关键点将被用于生成最终的视频。

  1. Reference Image: 提供一个参考帧,通常是一张静态的、人物正面的照片。

  2. Reference Pose Image: 参考图像中人物姿势的一个标准表示,用于帮助系统理解参考帧中的人物姿势。

  3. Denoising Unet:用于去除编码的潜在表示中的噪声,确保生成的图像尽可能清晰。

  4. VAE Decoder:将去噪后的潜在表示解码成2D图像,反映了目标视频帧的姿势。

  5. Motion Module:负责生成连续、平滑的面部运动,以创建逼真的视频。

四、遇到的问题与解决方案

1. audio2vid嘴唇动得太快 https://github.com/Zejun-Yang/AniPortrait/issues/7

可以在之后对预网格应用平滑AniPortrait/scripts/audio2vid.pyLine 155 in bfa1574
pred = pred + face_result['lmks3d'] 
, similar to what is done at,类似于在AniPortrait/scripts/generate_ref_pose.pyLine 85 in bfa1574pose_arr_smooth = smooth_pose_seq(pose_arr_interp)

2. video2video,源video需要和ref_image对齐吗?https://github.com/Zejun-Yang/AniPortrait/issues/27

将参考图片和参考视频处理成半身肖像的形式,尺寸作为正方形即可。可以参照demo中的样式,不需要严格对齐图片和视频的头部位置。

3. Audio driven 可以生成独立的视频吗?https://github.com/Zejun-Yang/AniPortrait/issues/48

​​​​​​​

目前audio2video方法生成30fps的视频时口型较准确。您无需调整L参数大小,生成视频后使用其他补帧方法提升到60fps即可。需要更高清视频也可以使用其他视频超分方法进行后处理,如果算力有余量,也可以尝试修改指令为-W 768 -H 768。另外,如果需要去掉输出结果中的pose video,对audio2video.py文件作出如下修改:AniPortrait/scripts/audio2vid.pyLine 210 in 415eb04
 video = torch.cat([ref_image_tensor, pose_tensor, video], dim=0) --》video = torch.cat([ref_image_tensor, video], dim=0)

4. 音频驱动的视频图像闪烁 https://github.com/Zejun-Yang/AniPortrait/issues/20

​​​​​​​

闪烁问题可能归因于扩散模型,我们正在积极努力在未来解决这个问题。FreeNoise 可以减少闪烁。只需使用时域中值滤波器再次将其传递给 FFMPEG:ffmpeg.exe -i .\input.mp4 -filter:v "tmedian=3" output.mp4这将显着减少闪烁

5.Face reenacment inference error:RuntimeError: CUDA error: device-side assert triggered  https://github.com/Zejun-Yang/AniPortrait/issues/42

​​​​​​​

RuntimeError: CUDA error: device-side assert triggeredCUDA kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect.For debugging consider passing CUDA_LAUNCH_BLOCKING=1.Compile with TORCH_USE_CUDA_DSA to enable device-side assertions

解决方案:

​​​​​​​​​​​​​​

更改视频路径并重试它应该在配置文件中起作用。`pretrained_base_model_path: './pretrained_model/stable-diffusion-v1-5'pretrained_vae_path: './pretrained_model/sd-vae-ft-mse'image_encoder_path: './pretrained_model/image_encoder'
denoising_unet_path: "./pretrained_model/denoising_unet.pth"reference_unet_path: "./pretrained_model/reference_unet.pth"pose_guider_path: "./pretrained_model/pose_guider.pth"motion_module_path: "./pretrained_model/motion_module.pth"
inference_config: "./configs/inference/inference_v2.yaml"weight_dtype: 'fp16'
test_cases:  "./configs/inference/ref_images/Aragaki.png":    - "./configs/inference/head_pose_temp/pose_ref_video.mp4"`

五、资料

1、项目:https://github.com/Zejun-Yang/AniPortrait

2、论文:https://arxiv.org/pdf/2403.17694.pdf

感谢你的阅读

接下来我们继续学习输出AIGC相关内容,欢迎关注公众号“音视频开发之旅”,一起学习成长。

欢迎交流

这篇关于音视频开发之旅(80)- AI数字人-腾讯开源AniPortrait-音频驱动的肖像动画的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/864445

相关文章

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

AI绘图怎么变现?想做点副业的小白必看!

在科技飞速发展的今天,AI绘图作为一种新兴技术,不仅改变了艺术创作的方式,也为创作者提供了多种变现途径。本文将详细探讨几种常见的AI绘图变现方式,帮助创作者更好地利用这一技术实现经济收益。 更多实操教程和AI绘画工具,可以扫描下方,免费获取 定制服务:个性化的创意商机 个性化定制 AI绘图技术能够根据用户需求生成个性化的头像、壁纸、插画等作品。例如,姓氏头像在电商平台上非常受欢迎,

这15个Vue指令,让你的项目开发爽到爆

1. V-Hotkey 仓库地址: github.com/Dafrok/v-ho… Demo: 戳这里 https://dafrok.github.io/v-hotkey 安装: npm install --save v-hotkey 这个指令可以给组件绑定一个或多个快捷键。你想要通过按下 Escape 键后隐藏某个组件,按住 Control 和回车键再显示它吗?小菜一碟: <template

Hadoop企业开发案例调优场景

需求 (1)需求:从1G数据中,统计每个单词出现次数。服务器3台,每台配置4G内存,4核CPU,4线程。 (2)需求分析: 1G / 128m = 8个MapTask;1个ReduceTask;1个mrAppMaster 平均每个节点运行10个 / 3台 ≈ 3个任务(4    3    3) HDFS参数调优 (1)修改:hadoop-env.sh export HDFS_NAMENOD

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

从去中心化到智能化:Web3如何与AI共同塑造数字生态

在数字时代的演进中,Web3和人工智能(AI)正成为塑造未来互联网的两大核心力量。Web3的去中心化理念与AI的智能化技术,正相互交织,共同推动数字生态的变革。本文将探讨Web3与AI的融合如何改变数字世界,并展望这一新兴组合如何重塑我们的在线体验。 Web3的去中心化愿景 Web3代表了互联网的第三代发展,它基于去中心化的区块链技术,旨在创建一个开放、透明且用户主导的数字生态。不同于传统

AI一键生成 PPT

AI一键生成 PPT 操作步骤 作为一名打工人,是不是经常需要制作各种PPT来分享我的生活和想法。但是,你们知道,有时候灵感来了,时间却不够用了!😩直到我发现了Kimi AI——一个能够自动生成PPT的神奇助手!🌟 什么是Kimi? 一款月之暗面科技有限公司开发的AI办公工具,帮助用户快速生成高质量的演示文稿。 无论你是职场人士、学生还是教师,Kimi都能够为你的办公文

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

嵌入式QT开发:构建高效智能的嵌入式系统

摘要: 本文深入探讨了嵌入式 QT 相关的各个方面。从 QT 框架的基础架构和核心概念出发,详细阐述了其在嵌入式环境中的优势与特点。文中分析了嵌入式 QT 的开发环境搭建过程,包括交叉编译工具链的配置等关键步骤。进一步探讨了嵌入式 QT 的界面设计与开发,涵盖了从基本控件的使用到复杂界面布局的构建。同时也深入研究了信号与槽机制在嵌入式系统中的应用,以及嵌入式 QT 与硬件设备的交互,包括输入输出设

OpenHarmony鸿蒙开发( Beta5.0)无感配网详解

1、简介 无感配网是指在设备联网过程中无需输入热点相关账号信息,即可快速实现设备配网,是一种兼顾高效性、可靠性和安全性的配网方式。 2、配网原理 2.1 通信原理 手机和智能设备之间的信息传递,利用特有的NAN协议实现。利用手机和智能设备之间的WiFi 感知订阅、发布能力,实现了数字管家应用和设备之间的发现。在完成设备间的认证和响应后,即可发送相关配网数据。同时还支持与常规Sof