C++多线程:线程的创建、join、detach、joinable方法(二)

2024-03-30 07:12

本文主要是介绍C++多线程:线程的创建、join、detach、joinable方法(二),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1、线程的开始与结束
  • 程序运行起来,生成一个进程,该进程所持有的主线程开始自动运行,main主线程运行完所有的代码从main函数中返回表示整个进程运行完毕,标志着主线程和进程的死亡,等待操作系统回收资源,因为有可能成为孤儿或者僵尸进程所以需要等待。
  • 如果创建自己的线程,也需要从一个函数开始运行(初始函数),一旦运行完毕就代表着这个线程运行结束。
  • 当主线程运行结束,子线程并没有执行完毕也会被操作系统强行终止(因为PCB进程控制块资源的回收),因此如果需要等待子线程正常执行完毕退出需要让主线程等待所有的子线程执行完毕
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -pthread")
2、线程的创建
  • thread库是C++11提供的标准库类,其构造有很多,主要有两种
    • 一种是只提供回调函数的构造
    • 一种是提供回调函数 + 回调函数参数的构造
  • 回调函数:回调函数是创建的线程的执行入口
#include <iostream>
#include <thread>void thread_func1()
{std::cout << "子线程开始执行" << std::endl;std::cout << "子线程执行完毕" << std::endl;
}void thread_func2(int arg)
{std::cout << "子线程开始执行" << std::endl;std::cout <<  arg << std::endl;std::cout << "子线程执行完毕" << std::endl;
}
int main()
{std::thread mythread1(thread_func1);std::thread mythread2(thread_func2, 5);mythread1.join();mythread2.join();std::cout << "main thread executed finish!" << std::endl;return 0;
}
2.1、join方法

join方法的主要用途就是阻塞主线程,等待子线程运行完毕在继续向下执行,类似所有线程都要汇聚到这一点主线程才继续向下执行。

  • 如果不适用join方法进行阻塞等待可能会造成异常
  #include <iostream>#include <thread>void thread_func1(){std::cout << "子线程开始执行1" << std::endl;std::cout << "子线程开始执行2" << std::endl;std::cout << "子线程开始执行3" << std::endl;std::cout << "子线程开始执行4" << std::endl;std::cout << "子线程开始执行5" << std::endl;std::cout << "子线程开始执行6" << std::endl;std::cout << "子线程执行完毕" << std::endl;}int main(){std::thread mythread1(thread_func1);std::cout << "main thread executed finish!" << std::endl;return 0;}

请添加图片描述出现问题的原因是因为主线程已经运行完毕,而mythread1是一个main栈帧里分配的一个临时变量,一旦执行完毕将会释放这个变量的空间导致线程执行错误

  • 如果将mythread1改成new的形式在堆区分配空间,将不会出现错误
  #include <iostream>#include <thread>void thread_func1(){std::cout << "子线程开始执行" << std::endl;std::cout << "子线程执行完毕" << std::endl;}int main(){std::thread *mythread1 = new std::thread(thread_func1);std::cout << "main thread executed finish!" << std::endl;return 0;}

请添加图片描述

  • 不过此时无法看到子线程的输出,因为main线程结束,子线程将失去控制台的读写权限,有点守护线程的味道
    • 一般会让主线程等待子线程运行完毕或者主线程和子线程采用detach进行脱离形成一个新的会话,保证所有的线程安全退出。
2.2、detach方法
  • detach有脱离分离的意思,线程调用该方法可以使得主线程和子线程失去上下级关系,二者平行。子线程运行完毕会自动退出,主线程也无须等待子线程运行完毕。
  • 当主线程和子线程并没有产生交集时,可以使子线程进行脱离,运行完毕自动回收。
    • 举个例子:例如用户登录软件或者Web页面,当账户验证通过时主线程需要继续响应用户的登录请求,而用户的登录日志的保存或者一些其他的日志需要子线程去保存,此时主线程和子线程没有任何交集,总不可能主线程等待子线程存完日志再响应用户吧?因此类似这种情况可以让子线程自动脱离,运行完毕自动结束。
    • 类似于驻留后台的守护线程:脱离的子线程由C++运行时库接管,当子线程运行完毕时由运行时库负责清理该线程的相关资源。
#include <iostream>
#include <thread>void thread_func1()
{std::cout << "子线程开始执行" << std::endl;std::cout << "子线程执行完毕" << std::endl;
}
int main()
{std::thread mythread1(thread_func1);mythread1.detach();std::cout << "main thread executed finish!" << std::endl;return 0;
}

请添加图片描述
一旦调用了detach或者join就不能再调用另外一个方法,否则系统会出现异常

2.3、joinable方法
  • joinable方法主要判断是否可以使用join方法或者detach方法,可以返回true,不可以返回false
  • 一个线程最多只能调用一次join或者detach
#include <iostream>
#include <thread>void thread_func1()
{std::cout << "子线程开始执行" << std::endl;std::cout << "子线程执行完毕" << std::endl;
}int main()
{std::thread mythread1(thread_func1);if(mythread1.joinable()){std::cout << "joinable() == true" << std::endl;mythread1.join();}else{std::cout << "joinable() == false" << std::endl;}std::cout << "------------------------------" << std::endl;if(mythread1.joinable()){std::cout << "joinable() == true" << std::endl;}else{std::cout << "joinable() == false" << std::endl;}std::cout << "main thread executed finish!" << std::endl;return 0;
}

请添加图片描述

3、线程的其他创建方式
3.1、无参自定义类型创建

线程的创建方式也可以通过传入一个类对象,并在类内部对函数运算符()进行重载,使用detach或者join都行。

class MyThreadClass1{
public:MyThreadClass1() {}void operator()() {std::cout << "子线程开始执行" << std::endl;std::cout << "子线程执行完毕" << std::endl;}
};
void test2()
{MyThreadClass1 myThreadClass1;std::thread mythread1(myThreadClass1);mythread1.join();
}
3.2、有参自定义类型创建

有参自定义类型创建时我们需要考虑两种情况:

  • 第一种情况是传入的参数是(指针或引用)、还是普通参数。
  • 第二种情况是使用join还是detach方法
    结论:join方法的话无论传指针或引用、还是普通参数都不会产生任何问题;只有detach对传入的参数有影响。
3.2.1、指针或引用类型
class MyThreadClass2{
public:int &m_i;MyThreadClass2(int &i): m_i(i) {}void operator()() {std::cout << "子线程开始执行" << std::endl;std::cout << "1. m_i = " << m_i << std::endl;std::cout << "2. m_i = " << m_i << std::endl;std::cout << "3. m_i = " << m_i << std::endl;std::cout << "4. m_i = " << m_i << std::endl;std::cout << "5. m_i = " << m_i << std::endl;std::cout << "子线程执行完毕" << std::endl;}
};
int main()
{int my_i = 5;MyThreadClass2 myThreadClass2(my_i);std::thread mythread2(myThreadClass2);mythread2.detach();std::cout << "main thread executed finish!" << std::endl;return 0;
}

请添加图片描述

  • 首先自定义类中需要的是一个引用(引用的本质是指针常量),引用的对象是一个分配在main函数栈帧上的一个普通int类型,再使用detach方法

    • detach方法会使得创建的线程与main主线程进行分离,执行完毕自动回收;而join将会阻塞main主线程
    • 而main主线程执行完毕时会释放掉main栈帧中的空间,因此会把my_i变量释放掉,导致类中引用的对象不存在,所以输出的结果是一个错误的。
  • 解决方法

    • 第一种:将my_i分配到堆区对象,就不是一个main栈帧的本地变量,这样main栈帧退出时将无法回收到这个变量,前提是退出时不进行delete释放。
    • 第二种:将类中的m_i改成普通成员变量不要传入引用或者指针,当一个普通变量当做函数的传入传出参数时是会进行一次拷贝的,而引用将不会拷贝。

这里为什么myThreadClass2对象不会因为main栈帧的释放而报错其实就是因为发生了拷贝构造,下面进行分析

3.2.2、普通变量的拷贝
  • 为了避免引用带来的问题以及对3.2.1中变量地址引用的一个解答,这里使用普通的m_i对象,不接收引用
  • 为了使得输出效果更好看,能够看到执行的流程使用join,不使用detach,但是依然可以使用detach只是输出不全(仅仅是为了输出效果全面)
class MyThreadClass3{
public:int m_i;MyThreadClass3(int i): m_i(i) {std::cout << "构造函数的执行" << std::endl;std::cout << "&m_i变量地址 = " << &m_i << ", &i = " << &i << std::endl;}MyThreadClass3(const MyThreadClass3 &myThreadClass3){this->m_i = myThreadClass3.m_i;std::cout << "拷贝构造函数的执行" << std::endl;}virtual ~MyThreadClass3() {std::cout << "析构函数的执行" << std::endl;}void operator()() {std::cout << "子线程开始执行" << std::endl;std::cout << "1. m_i = " << m_i << std::endl;std::cout << "2. m_i = " << m_i << std::endl;std::cout << "3. m_i = " << m_i << std::endl;std::cout << "4. m_i = " << m_i << std::endl;std::cout << "5. m_i = " << m_i << std::endl;std::cout << "子线程执行完毕" << std::endl;}
};
int main()
{int i = 3;std::cout << "main &i = " << &i << std::endl;MyThreadClass3 myThreadClass3(i);std::thread mythread3(myThreadClass3);mythread3.join();std::cout << "main thread executed finish!" << std::endl;return 0;
}

请添加图片描述

  • 可以很清楚的看到三个变量i和m_i的地址是不一样的,也就是说传入参数的时候普通变量会进行拷贝构造
  • 而对象也会进行拷贝构造,但这里为什么拷贝构造两次就需要深入追源码了,这里不做过多的叙述(初学入门)。但是可以明白的一点就是:myThreadClass3对象传入给线程mythread3变量时会被执行拷贝构造!
3.3、lambda表达式创建
auto mylambdathread = [](){std::cout << "子线程开始执行" << std::endl;std::cout << "子线程执行完毕" << std::endl;
};
std::thread mythread4(mylambdathread);
mythread4.detach();
4、总结

到此学习完了C++最基本的线程的创建与使用

  • join方法会阻塞执行该代码的线程(main中执行这行代码就会阻塞main),detach方法不会。detach方法不会的主要原因是脱离了当前进程所在的会话session,成为一个独立的进程(该进程只有当前线程),执行完毕会被操作系统自动回收资源
  • 对于join和detach方法的使用需要根据实际情况判定使用哪个
  • 对于数据类型指针或引用、还是普通变量传入时是否会进行拷贝,注意会不会因为搭配detach而产生错误。

这篇关于C++多线程:线程的创建、join、detach、joinable方法(二)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/860818

相关文章

【C++ Primer Plus习题】13.4

大家好,这里是国中之林! ❥前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站。有兴趣的可以点点进去看看← 问题: 解答: main.cpp #include <iostream>#include "port.h"int main() {Port p1;Port p2("Abc", "Bcc", 30);std::cout <<

C++包装器

包装器 在 C++ 中,“包装器”通常指的是一种设计模式或编程技巧,用于封装其他代码或对象,使其更易于使用、管理或扩展。包装器的概念在编程中非常普遍,可以用于函数、类、库等多个方面。下面是几个常见的 “包装器” 类型: 1. 函数包装器 函数包装器用于封装一个或多个函数,使其接口更统一或更便于调用。例如,std::function 是一个通用的函数包装器,它可以存储任意可调用对象(函数、函数

C++11第三弹:lambda表达式 | 新的类功能 | 模板的可变参数

🌈个人主页: 南桥几晴秋 🌈C++专栏: 南桥谈C++ 🌈C语言专栏: C语言学习系列 🌈Linux学习专栏: 南桥谈Linux 🌈数据结构学习专栏: 数据结构杂谈 🌈数据库学习专栏: 南桥谈MySQL 🌈Qt学习专栏: 南桥谈Qt 🌈菜鸡代码练习: 练习随想记录 🌈git学习: 南桥谈Git 🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈�

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal

06 C++Lambda表达式

lambda表达式的定义 没有显式模版形参的lambda表达式 [捕获] 前属性 (形参列表) 说明符 异常 后属性 尾随类型 约束 {函数体} 有显式模版形参的lambda表达式 [捕获] <模版形参> 模版约束 前属性 (形参列表) 说明符 异常 后属性 尾随类型 约束 {函数体} 含义 捕获:包含零个或者多个捕获符的逗号分隔列表 模板形参:用于泛型lambda提供个模板形参的名

浅谈主机加固,六种有效的主机加固方法

在数字化时代,数据的价值不言而喻,但随之而来的安全威胁也日益严峻。从勒索病毒到内部泄露,企业的数据安全面临着前所未有的挑战。为了应对这些挑战,一种全新的主机加固解决方案应运而生。 MCK主机加固解决方案,采用先进的安全容器中间件技术,构建起一套内核级的纵深立体防护体系。这一体系突破了传统安全防护的局限,即使在管理员权限被恶意利用的情况下,也能确保服务器的安全稳定运行。 普适主机加固措施:

webm怎么转换成mp4?这几种方法超多人在用!

webm怎么转换成mp4?WebM作为一种新兴的视频编码格式,近年来逐渐进入大众视野,其背后承载着诸多优势,但同时也伴随着不容忽视的局限性,首要挑战在于其兼容性边界,尽管WebM已广泛适应于众多网站与软件平台,但在特定应用环境或老旧设备上,其兼容难题依旧凸显,为用户体验带来不便,再者,WebM格式的非普适性也体现在编辑流程上,由于它并非行业内的通用标准,编辑过程中可能会遭遇格式不兼容的障碍,导致操

在cscode中通过maven创建java项目

在cscode中创建java项目 可以通过博客完成maven的导入 建立maven项目 使用快捷键 Ctrl + Shift + P 建立一个 Maven 项目 1 Ctrl + Shift + P 打开输入框2 输入 "> java create"3 选择 maven4 选择 No Archetype5 输入 域名6 输入项目名称7 建立一个文件目录存放项目,文件名一般为项目名8 确定

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验