Pytorch入门实战 P4-猴痘图片,精确度提升

2024-03-29 20:12

本文主要是介绍Pytorch入门实战 P4-猴痘图片,精确度提升,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

一、前言:

二、前期准备:

1、设备查看

2、导入收集到的数据集

3、数据预处理

4、划分数据集(8:2)

5、加载数据集

三、搭建神经网络

四、训练模型

1、设置超参数

2、编写训练函数

3、编写测试函数

4、正式训练

五、可视化结果

六、预测

1、预测函数

2、指定图片进行预测

七、模型保存

八、运行结果展示:

①使用原有的网络模型,测试集的精确度基本上在82%左右。

②在原有网络模型的基础上,添加了relu激活函数,

③减小学习率,

④增大学习率,


  • 🍨 本文为🔗365天深度学习训练营 中的学习记录博客
  • 🍖 原作者:K同学啊 | 接辅导、项目定制

一、前言:

本篇博文,主要使用猴痘数据集,来训练模型,大部分的代码还是之前的很类似,不同的地方在意,使用的模型参数不同,模型也都是类似的。这篇文章里面,你可以学会如何保存训练好的模型,如何使用保存的的模型进行预测。

如以往一样,可以先大概看下目录,你的脑海会有大概得流程。

二、前期准备:

1、设备查看

# 1、设备相关
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
print(device)

2、导入收集到的数据集

我的数据集文件夹是这样的:

①一个是带有猴痘的图片的文件夹;②一个是其他痘的文件夹;

# 2、导入数据
data_dir = './data'
data_dir = pathlib.Path(data_dir)  # 获取到文件data的名称data_paths = list(data_dir.glob('*'))  # 获取到文件夹data下面子文件夹的名称  [PosixPath('data/Others'), PosixPath('data/Monkeypox')]
classNames = [str(path).split('/')[1] for path in data_paths]  # 获取到子文件夹的名称  ['Others', 'Monkeypox']

3、数据预处理

# 3、数据处理
train_transforms = transforms.Compose([transforms.Resize([224, 224]),transforms.ToTensor(),transforms.Normalize(mean=[0.485, 0.456, 0.406],std=[0.229, 0.224, 0.225])
])total_data = datasets.ImageFolder('./data',transform=train_transforms)
# print(total_data.class_to_idx)  # {'Monkeypox': 0, 'Others': 1}  total_data.class_to_idx 是一个存储了数据集类别和对应索引的字典。

4、划分数据集(8:2)

# 4、划分数据集
train_size = int(0.8*len(total_data))
test_size = len(total_data) - train_size
train_dataset, test_dataset = torch.utils.data.random_split(total_data,[train_size, test_size])
# print(len(train_dataset), len(test_dataset))   # 1713  429

5、加载数据集

# 5、加载数据集
batch_size = 32
train_dl = torch.utils.data.DataLoader(train_dataset,batch_size=batch_size,shuffle=True,num_workers=1)
test_dl = torch.utils.data.DataLoader(test_dataset,batch_size=batch_size,shuffle=True,num_workers=1)
print('准备工作结束。。。。')

三、搭建神经网络

网络图如下:

# 猴痘的模型
class Network_bn(nn.Module):def __init__(self):super(Network_bn, self).__init__()'''默认stride为1;  padding为0'''self.conv1 = nn.Conv2d(in_channels=3, out_channels=12, kernel_size=5, stride=1, padding=0)self.bn1 = nn.BatchNorm2d(12)self.conv2 = nn.Conv2d(in_channels=12, out_channels=12, kernel_size=5, stride=1, padding=0)self.bn2 = nn.BatchNorm2d(12)self.pool1 = nn.MaxPool2d(2, 2)self.conv3 = nn.Conv2d(in_channels=12, out_channels=24, kernel_size=5, stride=1, padding=0)self.bn3 = nn.BatchNorm2d(24)self.conv4 = nn.Conv2d(in_channels=24, out_channels=24, kernel_size=5, stride=1, padding=0)self.bn4 = nn.BatchNorm2d(24)self.pool2 = nn.MaxPool2d(2, 2)self.fc = nn.Linear(24*50*50, 2)self.relu = nn.ReLU(inplace=True)def forward(self, x):x = F.relu(self.bn1(self.conv1(x)))x = F.relu(self.bn2(self.conv2(x)))x = self.pool1(x)x = F.relu(self.bn3(self.conv3(x)))x = F.relu(self.bn4(self.conv4(x)))x = self.pool2(x)x = x.view(-1, 24*50*50)x = self.fc(x)x = self.relu(x)return xmodel = Network_bn().to(device)
print(model)

四、训练模型

1、设置超参数

# 三、训练模型
# 1、 设置超参数
loss_fn = nn.CrossEntropyLoss()  # 创建损失函数
learn_rate = 1e-4  # 学习率
opt = torch.optim.SGD(model.parameters(), lr=learn_rate)

2、编写训练函数

# 2、编写训练函数
def train(dataloader, model, loss_fn, optimizer):size = len(dataloader.dataset)   # 训练集大小num_batches = len(dataloader)    # 批次数目train_acc, train_loss = 0, 0for X, y in dataloader:  # 获取图片及其标签X, y = X.to(device), y.to(device)# 计算预测误差pred = model(X)   # 网络输出loss = loss_fn(pred, y)  # 计算网络输出与真实值之间的差距。# 反向传播optimizer.zero_grad()  # grad属性归零loss.backward()   # 反向传播optimizer.step()  # 每一步自动更新# 记录acc与losstrain_acc += (pred.argmax(1) == y).type(torch.float).sum().item()train_loss += loss.item()train_acc /= sizetrain_loss /= num_batchesreturn train_acc, train_loss

3、编写测试函数

# 3、 编写测试函数def test(dataloader, model, loss_fn):size = len(dataloader.dataset)  # 测试集大小num_batches = len(dataloader)  # 批次数目test_acc, test_loss = 0, 0# 当不进行训练时,停止梯度更新,节省计算内存消耗with torch.no_grad():for imgs, target in dataloader:imgs, target = imgs.to(device), target.to(device)# 计算损失target_pred = model(imgs)loss = loss_fn(target_pred, target)test_acc += (target_pred.argmax(1) == target).type(torch.float).sum().item()test_loss += loss.item()test_acc /= sizetest_loss /= num_batchesreturn test_acc, test_loss

4、正式训练

# 正式训练
epochs = 20
train_loss = []
train_acc = []
test_loss = []
test_acc = []for epoch in range(epochs):model.train()epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, opt)model.eval()epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)train_acc.append(epoch_train_acc)train_loss.append(epoch_train_loss)test_acc.append(epoch_test_acc)test_loss.append(epoch_test_loss)template = 'Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%, Test_loss:{:.3f}'print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss))
print('Done')

五、可视化结果

# 结果可视化
warnings.filterwarnings('ignore')  # 忽略警告信息
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号
plt.rcParams['figure.dpi'] = 100  # 分辨率epochs_range = range(epochs)plt.figure(figsize=(12,3))
plt.subplot(1, 2, 1)
plt.plot(epochs_range, train_acc, label="Training Acc")
plt.plot(epochs_range, test_acc, label="Test Acc")
plt.legend(loc='lower right')
plt.title('Training and Validation Acc')plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label="Training Loss")
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')plt.savefig("/data/jupyter/deepinglearning_train_folder/p04_weather/resultImg.jpg")
plt.show()

六、预测

1、预测函数

classes = list(total_data.class_to_idx)
print('classes:', classes)# 预测训练集中的某张图片
predict_one_image(image_path='./data/Monkeypox/M01_01_00.jpg',model=model,transform=train_transforms,classes=classes)

2、指定图片进行预测

# 预测函数
def predict_one_image(image_path, model, transform, classes):test_img = Image.open(image_path).convert('RGB')test_img = transform(test_img)img = test_img.to(device).unsqueeze(0)model.eval()output = model(img)_, pred = torch.max(output, 1)pred_class = classes[pred]print(f'预测结果是:{pred_class}')

七、模型保存

# 模型保存
PATH = './model.pth'  # 保存的模型
torch.save(model.state_dict(), PATH)# 将参数加载到model当中
model.load_state_dict(torch.load(PATH, map_location=device))

(我是在具有GPU的服务器上训练的模型)

八、运行结果展示:

①使用原有的网络模型,测试集的精确度基本上在82%左右。

②在原有网络模型的基础上,添加了relu激活函数,

可使得精度提高2%左右。但是训练精度减少了。

③减小学习率,

使得测试精度,直线下降

④增大学习率,

也可以使得测试精确度提高2%左右,还会使得训练的精确度更好,达到98.7%

这篇关于Pytorch入门实战 P4-猴痘图片,精确度提升的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/859534

相关文章

Golang操作DuckDB实战案例分享

《Golang操作DuckDB实战案例分享》DuckDB是一个嵌入式SQL数据库引擎,它与众所周知的SQLite非常相似,但它是为olap风格的工作负载设计的,DuckDB支持各种数据类型和SQL特性... 目录DuckDB的主要优点环境准备初始化表和数据查询单行或多行错误处理和事务完整代码最后总结Duck

C#使用yield关键字实现提升迭代性能与效率

《C#使用yield关键字实现提升迭代性能与效率》yield关键字在C#中简化了数据迭代的方式,实现了按需生成数据,自动维护迭代状态,本文主要来聊聊如何使用yield关键字实现提升迭代性能与效率,感兴... 目录前言传统迭代和yield迭代方式对比yield延迟加载按需获取数据yield break显式示迭

C#中图片如何自适应pictureBox大小

《C#中图片如何自适应pictureBox大小》文章描述了如何在C#中实现图片自适应pictureBox大小,并展示修改前后的效果,修改步骤包括两步,作者分享了个人经验,希望对大家有所帮助... 目录C#图片自适应pictureBox大小编程修改步骤总结C#图片自适应pictureBox大小上图中“z轴

PyTorch使用教程之Tensor包详解

《PyTorch使用教程之Tensor包详解》这篇文章介绍了PyTorch中的张量(Tensor)数据结构,包括张量的数据类型、初始化、常用操作、属性等,张量是PyTorch框架中的核心数据结构,支持... 目录1、张量Tensor2、数据类型3、初始化(构造张量)4、常用操作5、常用属性5.1 存储(st

使用Python将长图片分割为若干张小图片

《使用Python将长图片分割为若干张小图片》这篇文章主要为大家详细介绍了如何使用Python将长图片分割为若干张小图片,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. python需求的任务2. Python代码的实现3. 代码修改的位置4. 运行结果1. Python需求

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

Golang使用minio替代文件系统的实战教程

《Golang使用minio替代文件系统的实战教程》本文讨论项目开发中直接文件系统的限制或不足,接着介绍Minio对象存储的优势,同时给出Golang的实际示例代码,包括初始化客户端、读取minio对... 目录文件系统 vs Minio文件系统不足:对象存储:miniogolang连接Minio配置Min

Node.js 中 http 模块的深度剖析与实战应用小结

《Node.js中http模块的深度剖析与实战应用小结》本文详细介绍了Node.js中的http模块,从创建HTTP服务器、处理请求与响应,到获取请求参数,每个环节都通过代码示例进行解析,旨在帮... 目录Node.js 中 http 模块的深度剖析与实战应用一、引言二、创建 HTTP 服务器:基石搭建(一

使用 Python 和 LabelMe 实现图片验证码的自动标注功能

《使用Python和LabelMe实现图片验证码的自动标注功能》文章介绍了如何使用Python和LabelMe自动标注图片验证码,主要步骤包括图像预处理、OCR识别和生成标注文件,通过结合Pa... 目录使用 python 和 LabelMe 实现图片验证码的自动标注环境准备必备工具安装依赖实现自动标注核心

Java操作xls替换文本或图片的功能实现

《Java操作xls替换文本或图片的功能实现》这篇文章主要给大家介绍了关于Java操作xls替换文本或图片功能实现的相关资料,文中通过示例代码讲解了文件上传、文件处理和Excel文件生成,需要的朋友可... 目录准备xls模板文件:template.xls准备需要替换的图片和数据功能实现包声明与导入类声明与