Spark SQL(一) 如何创建DataFrames

2024-03-29 17:58

本文主要是介绍Spark SQL(一) 如何创建DataFrames,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Spark SQL(一) 如何创建DataFrames

Spark SQL包含两个主要的部分,第一部分是DataFrames和Datasets, 第二部分是Catalyst optimizer.
DataFrames和Datasets是结构性API的展示,定义了操作结构化数据的高层次API,
而Catalyst optimizer则是在背后对处理数据的逻辑进行优化,以加速处理数据的速度。

结构化数据通常有确定的格式,比如文本类数据格式CSV, XML, JSON。还有二进制数据:Avro, Parquet, ORC.
Spark支持以上数据格式的读和写,因此Spark可以作为数据格式转换工具。

DataFrames

DataFrames 是一个不可变的,以行的形式被组织的,分布式的数据集合,类似于关系数据库中的表。

和RDD类似, DataFrame相关的API也被分为转换(Transformation)和行为(Action), 且转换操作是懒生效模式,行为是立即生效模式。

DataFrame可以通过从之前提到的多种个数读数据创建,也可以通过读Hive或数据库中的表创建,同时Spark SQL还支持把RDD转化成DataFrame.

创建DataFrames
  1. 从RDD中创建DataFrames

一个例子:

import scala.util.Random
val rdd = spark.sparkContext.parallelize(1 to 10).map(x => (x, Random.nextInt(100)* x))val kvDF = rdd.toDF("key","value")

这段代码首先创建了RDD, 然后调用toDF指定列名,隐式创建了一个DataFrame.

我们可以用printSchema方法打印一个DataFrame的schema, 然后通过show方法打印出数据,默认show只显示前20行,可以指定打印的行数。

kvDF.printSchema
|-- key: integer (nullable = false)
|-- value: integer (nullable = false)
kvDF.show(5)
+---+-----+
|key|value|
+---+-----+
|  1|   59|
|  2|   60|
|  3|   66|
|  4|  280|
|  5|   40|
+---+-----+
  1. 通过编程的方式创建一个schema,并和一个RDD绑定从而创建一个DataFrame

记住toDF是隐式的创建一个schema,所以不需要指定schema.

一个例子:

import org.apache.spark.sql.Row
import org.apache.spark.sql.types._
val peopleRDD = spark.sparkContext.parallelize(Array(Row(1L, "John Doe",  30L), Row(2L, "Mary Jane", 25L)))val schema = StructType(Array(StructField("id", LongType, true),StructField("name", StringType, true),StructField("age", LongType, true)
))

创建DataFrame

val peopleDF = spark.createDataFrame(peopleRDD, schema)

同样地查看shema和数据:

peopleDF.printSchema|-- id: long (nullable = true)|-- name: string (nullable = true)|-- age: long (nullable = true)
peopleDF.show
+--+-----------+---+
|id|       name|age|
+--+-----------+---+
| 1|   John Doe| 30|
| 2|  Mary Jane| 25|
+--+-----------+---+

DataFrame中每一个列的数据类型被映射到一个spark 内部数据类型。映射关系如下:

数据类型:ScaleType
BooleanType: Boolean
ByteType: Byte
ShortType: Short
IntegerType: Int
LongType: Long
FloatType: Float
DoubleType: Double
DecimalType: java.math.BigDecimal
StringType: String
BinaryType: Array[Byte]
TimestampType: java.sql.Timestamp
DateType: java.sql.Date
ArrayType: scala.collection.Seq
MapType: scala.collection.Map
StructType: org.apache.spark.sql.Row
  1. 从一个数字范围创建一个DataFrame

一个例子:

val df1 = spark.range(5).toDF("num").show

输出:

+---+
|num|
+---+
|  0|
|  1|
|  2|
|  3|
|  4|
+---+
  1. 根据一个数据源创建DataFrame

SparkSQL中和读写数据有关的类是DataFrameReaderDataFrameWriter
SparkSession类的read成员就是一个DataFrameReader类的实例,
所以通常情况下:可以用下面的语句从数据源创建一个DataFrame

spark.read.format(...).option("key", value").schema(...).load()

其中format可以有以下几种(json, parquet, jdbc, orc, csv, text)。

Spark内置了6种数据源:

  • 从文本文件创建DataFrame
spark.read.text("README.md")
  • 从CSV创建
val movies = spark.read.option("header","true").csv("<path>/book/chapter4/data/movies/movies.csv")

对于CSV数据源来讲有4个option可以设置:sep, header, escape, inferSchema.
其中sep是指指定一个字符作为分割符, CSV文件默认分割符是,, header的取值是true或者false,默认值是false, escape是当列中的数据和sep字符相同时用来转义用的,取值时任何字符,默认值是\. inferSchema用来指定是否根据列值来判断列的数据类型, 取值是true或者false, 默认值是false.

  • 从json文件创建
val movies5 = spark.read.json("<path>/book/chapter4/data/movies/movies.json")
  • 从parquet创建
val movies9 = spark.read.load("<path>/book/chapter4/data/movies/movies.parquet")
  • 从ORC创建
val movies11 = spark.read.orc("<path>/book/chapter4/data/movies/movies.orc")
  • 从jdbc数据源创建
val mysqlURL= "jdbc:mysql://localhost:3306/sakila"
val filmDF = spark.read.format("jdbc").option("driver", "com.mysql.jdbc.Driver").option("url", mysqlURL).option("dbtable", "film").option("user", "<username>").option("password","<password>").load()

这篇关于Spark SQL(一) 如何创建DataFrames的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/859258

相关文章

Android 悬浮窗开发示例((动态权限请求 | 前台服务和通知 | 悬浮窗创建 )

《Android悬浮窗开发示例((动态权限请求|前台服务和通知|悬浮窗创建)》本文介绍了Android悬浮窗的实现效果,包括动态权限请求、前台服务和通知的使用,悬浮窗权限需要动态申请并引导... 目录一、悬浮窗 动态权限请求1、动态请求权限2、悬浮窗权限说明3、检查动态权限4、申请动态权限5、权限设置完毕后

Springboot中分析SQL性能的两种方式详解

《Springboot中分析SQL性能的两种方式详解》文章介绍了SQL性能分析的两种方式:MyBatis-Plus性能分析插件和p6spy框架,MyBatis-Plus插件配置简单,适用于开发和测试环... 目录SQL性能分析的两种方式:功能介绍实现方式:实现步骤:SQL性能分析的两种方式:功能介绍记录

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

oracle DBMS_SQL.PARSE的使用方法和示例

《oracleDBMS_SQL.PARSE的使用方法和示例》DBMS_SQL是Oracle数据库中的一个强大包,用于动态构建和执行SQL语句,DBMS_SQL.PARSE过程解析SQL语句或PL/S... 目录语法示例注意事项DBMS_SQL 是 oracle 数据库中的一个强大包,它允许动态地构建和执行

SQL 中多表查询的常见连接方式详解

《SQL中多表查询的常见连接方式详解》本文介绍SQL中多表查询的常见连接方式,包括内连接(INNERJOIN)、左连接(LEFTJOIN)、右连接(RIGHTJOIN)、全外连接(FULLOUTER... 目录一、连接类型图表(ASCII 形式)二、前置代码(创建示例表)三、连接方式代码示例1. 内连接(I

在MySQL执行UPDATE语句时遇到的错误1175的解决方案

《在MySQL执行UPDATE语句时遇到的错误1175的解决方案》MySQL安全更新模式(SafeUpdateMode)限制了UPDATE和DELETE操作,要求使用WHERE子句时必须基于主键或索引... mysql 中遇到的 Error Code: 1175 是由于启用了 安全更新模式(Safe Upd

Python创建Excel的4种方式小结

《Python创建Excel的4种方式小结》这篇文章主要为大家详细介绍了Python中创建Excel的4种常见方式,文中的示例代码简洁易懂,具有一定的参考价值,感兴趣的小伙伴可以学习一下... 目录库的安装代码1——pandas代码2——openpyxl代码3——xlsxwriterwww.cppcns.c

轻松上手MYSQL之JSON函数实现高效数据查询与操作

《轻松上手MYSQL之JSON函数实现高效数据查询与操作》:本文主要介绍轻松上手MYSQL之JSON函数实现高效数据查询与操作的相关资料,MySQL提供了多个JSON函数,用于处理和查询JSON数... 目录一、jsON_EXTRACT 提取指定数据二、JSON_UNQUOTE 取消双引号三、JSON_KE

MySql死锁怎么排查的方法实现

《MySql死锁怎么排查的方法实现》本文主要介绍了MySql死锁怎么排查的方法实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录前言一、死锁排查方法1. 查看死锁日志方法 1:启用死锁日志输出方法 2:检查 mysql 错误

MySQL数据库函数之JSON_EXTRACT示例代码

《MySQL数据库函数之JSON_EXTRACT示例代码》:本文主要介绍MySQL数据库函数之JSON_EXTRACT的相关资料,JSON_EXTRACT()函数用于从JSON文档中提取值,支持对... 目录前言基本语法路径表达式示例示例 1: 提取简单值示例 2: 提取嵌套值示例 3: 提取数组中的值注意