政安晨:专栏目录【TensorFlow与Keras实战演绎机器学习】

2024-03-29 15:44

本文主要是介绍政安晨:专栏目录【TensorFlow与Keras实战演绎机器学习】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

政安晨的个人主页政安晨

欢迎 👍点赞✍评论⭐收藏

收录专栏: TensorFlow与Keras实战演绎机器学习

希望政安晨的博客能够对您有所裨益,如有不足之处,欢迎在评论区提出指正!

本篇是作者政安晨的专栏TensorFlow与Keras实战演绎机器学习》的总纲专栏文章不断更新,这篇目录总纲也会随着专栏不断更新。


TensorFLow简述

TensorFlow给自己的定位是端到端机器学习平台,作者政安晨对TensorFlow的简述如下:

谷歌的TensorFlow是一个开源的机器学习框架,用于构建和训练各种机器学习模型

它提供了一个高度灵活和可扩展的平台,可以在多种硬件平台上运行,包括移动设备和分布式系统。

TensorFlow的核心是数据流图,它表示了模型的计算过程。

用户可以定义计算图中的各种操作和变量,并使用TensorFlow的API来进行操作。

TensorFlow提供了丰富的操作库,包括数值运算、图像处理、文本处理等。用户可以根据自己的需求选择合适的操作来构建模型。

TensorFlow还提供了强大的自动求导功能,可以自动计算模型中各个参数的梯度。这使得用户可以方便地进行优化算法的实现和训练模型。

此外,TensorFlow还具有分布式计算的能力,可以在多台机器上进行并行计算。这使得TensorFlow可以处理大规模的数据和复杂的模型。

总之,TensorFlow是一个功能强大、灵活可扩展的机器学习框架,被广泛应用于各个领域,包括计算机视觉、自然语言处理、强化学习等。

导入和使用TensorFlow其实并不难:

import tensorflow as tf

关键是如何循序渐进地入门,并针对某个具体目标开展实例,并解决问题。


Keras简述

Keras给自己的定位是一个用 Python 编写的高级神经网络 API,作者政安晨对Keras的简述如下:

Keras是一个开源的高级神经网络库,用于构建和训练深度学习模型。

它是Python编程语言的接口,能够在多种深度学习框架的后端运行,包括TensorFlow、Theano和CNTK、PyTorch等。Keras的设计目标是让用户能够快速、简单地实现和迭代神经网络模型。

Keras提供了一系列丰富的工具和功能,方便用户进行模型构建、层的堆叠、优化算法的选择和训练过程的监控等。

它提供了一种直观的、具有模块化特性的方式来定义模型,可以通过简单地将预定义的层进行堆叠和连接来创建神经网络。在模型构建的过程中,用户可以选择不同的层类型,如全连接层、卷积层、池化层等,并进行定制化的配置。

Keras还提供了一系列内置的优化算法,如随机梯度下降(SGD)、Adam、Adagrad等,用户可以根据任务的要求选择适合的优化算法。此外,Keras还提供了一些常用的损失函数和性能评估指标,如均方误差(MSE)、交叉熵(Cross-Entropy)、准确率等。

Keras的特点之一是其模块化和可扩展性。用户可以通过定制化的方式来创建自定义的层、损失函数或评估指标,并将它们与现有的Keras功能无缝集成。这种灵活性使得Keras适用于各种深度学习任务,如图像分类、自然语言处理、语音识别等。

总的来说,Keras是一个简单易用、高效灵活的机器学习库,使得构建和训练神经网络模型变得更加容易。它的设计哲学是用户友好,追求快速实现和迭代,为机器学习领域的研究人员和工程师提供了一个强大的工具。

导入和使用Keras其实并不难:

from tensorflow import keras
from tensorflow.keras import layers

关键是如何对Keras的API体系和方法有整体认识,并在实际应用中,恰当地选择解决方案。


目录摘要

目录分类根据文章对不同层次用户的使用功效划分。

入门尝试

××××××××××××××××××××××××××××××××××××××××××××××××××××××

政安晨——基于Anaconda安装TensorFlow并尝试一个神经网络小实例

政安晨——跟着演练快速理解TensorFlow(适合新手入门)

政安晨——基于Ubuntu系统的Miniconda安装TensorFlow并使用Jupyter Notebook在多个Conda虚拟环境下管理测试

政安晨——演绎一个TensorFlow官方的Keras示例(对服装图像进行分类,很全面)

政安晨——示例演绎在TensorFlow中使用 CSV数据(基于Colab的Jupyter笔记)(1.5万字长文超详细)

政安晨:【详细解析】【用TensorFlow从头实现】一个机器学习的神经网络小示例【解构演绎】

政安晨:【示例演绎】【用TensorFlow编写线性分类器】—— 同时了解一点TensorFlow与Keras的基本概念


夯实基础

×××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××

政安晨:示例演绎机器学习中(深度学习)神经网络的数学基础——快速理解核心概念(一){两篇文章讲清楚}

政安晨:示例演绎机器学习中(深度学习)神经网络的数学基础——快速理解核心概念(二){两篇文章讲清楚}

政安晨:示例演绎TensorFlow的官方指南(一){基础知识}

政安晨:示例演绎TensorFlow的官方指南(二){Estimator}

政安晨:示例演绎TensorFlow的官方指南(三){快速使用数据可视化工具TensorBoard}

政安晨:【示例演绎机器学习】(一)—— 剖析神经网络:学习核心的Keras API

政安晨:【示例演绎机器学习】(二)—— 神经网络的二分类问题示例(影评分类)

政安晨:【示例演绎机器学习】(三)—— 神经网络的多分类问题示例 (新闻分类)

政安晨:【示例演绎机器学习】(四)—— 神经网络的标量回归问题示例 (价格预测)

政安晨:【深度学习部署】—— TensorFlow Extended(TFX)介绍

政安晨:【深度学习实践】【使用 TensorFlow 和 Keras 为结构化数据构建和训练神经网络】(一)—— 单个神经元

政安晨:【深度学习实践】【使用 TensorFlow 和 Keras 为结构化数据构建和训练神经网络】(二)—— 深度神经网络

政安晨:【深度学习实践】【使用 TensorFlow 和 Keras 为结构化数据构建和训练神经网络】(三)—— 随机梯度下降

政安晨:【深度学习实践】【使用 TensorFlow 和 Keras 为结构化数据构建和训练神经网络】(四)—— 过拟合和欠拟合

政安晨:【深度学习实践】【使用 TensorFlow 和 Keras 为结构化数据构建和训练神经网络】(五)—— Dropout和批归一化

政安晨:【深度学习实践】【使用 TensorFlow 和 Keras 为结构化数据构建和训练神经网络】(六)—— 二元分类

政安晨:【Keras机器学习实践要点】(一)—— 从快速上手开始

政安晨:【Keras机器学习实践要点】(二)—— 给首次接触Keras 3 的朋友

政安晨:【Keras机器学习实践要点】(三)—— 编写组件与训练数据

政安晨:【Keras机器学习实践要点】(四)—— 顺序模型

政安晨:【Keras机器学习实践要点】(五)—— 通过子类化创建新层和模型

政安晨:【Keras机器学习实践要点】(六)—— 使用内置方法进行训练和评估

政安晨:【Keras机器学习实践要点】(七)—— 使用TensorFlow自定义fit()

政安晨:【Keras机器学习实践要点】(八)—— 在 TensorFlow 中从头开始编写训练循环


实践提高

××××××××××××××××××××××××××××××××××××××××××××××××××

政安晨:梯度与导数~示例演绎《机器学习·神经网络》的高阶理解

政安晨:【掌握AI的深度学习工具Keras API】(一)—— 【构建Keras模型的不同方法】(万字长文)

政安晨:【掌握AI的深度学习工具Keras API】(二)—— 【使用内置的训练循环和评估循环】



这篇关于政安晨:专栏目录【TensorFlow与Keras实战演绎机器学习】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/858981

相关文章

网页解析 lxml 库--实战

lxml库使用流程 lxml 是 Python 的第三方解析库,完全使用 Python 语言编写,它对 XPath表达式提供了良好的支 持,因此能够了高效地解析 HTML/XML 文档。本节讲解如何通过 lxml 库解析 HTML 文档。 pip install lxml lxm| 库提供了一个 etree 模块,该模块专门用来解析 HTML/XML 文档,下面来介绍一下 lxml 库

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

C#实战|大乐透选号器[6]:实现实时显示已选择的红蓝球数量

哈喽,你好啊,我是雷工。 关于大乐透选号器在前面已经记录了5篇笔记,这是第6篇; 接下来实现实时显示当前选中红球数量,蓝球数量; 以下为练习笔记。 01 效果演示 当选择和取消选择红球或蓝球时,在对应的位置显示实时已选择的红球、蓝球的数量; 02 标签名称 分别设置Label标签名称为:lblRedCount、lblBlueCount

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学