PTA How Long Does It Take 思路分析及代码解析

2024-03-29 14:32

本文主要是介绍PTA How Long Does It Take 思路分析及代码解析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

PTA How Long Does It Take 思路分析及代码解析v0.9.1

  • 一、前导
    • 1. 需要掌握的知识
    • 2. 题目信息
  • 二、解题思路分析
    • 1. 题意理解
      • 1. 1 输入数据
      • 1.2 输出数据
    • 2. 思路分析(重点)
  • 三、具体实现
    • 1. 弯路和bug
    • 2. 代码框架(重点)
      • 2.1 采用的数据结构
      • 2.2 程序主体框架
      • 2.3 各分支函数
    • 3. 完整AC编码
  • 四、参考

一、前导

1. 需要掌握的知识

  1. AOV网:顶点表示活动,边表示活动间先后关系的有向图 称做 顶点活动网络(Activity On Vertex network),简称AOV网
  2. 在AOV网中,若不存在回路,则所有活动可排列成一个线性序列,使得每个活动的所有前驱活动都排在该活动的前面,我们把此序列 称为 拓扑序列(Topological order),由AOV网构造拓扑序列的过程叫做 拓扑排序(Topological sort)。
  3. AOV网的拓扑序列不是唯一的,满足上述定义的任一线性序列都称作它的拓扑序列。
  4. AOV网构造出拓扑序列的实际意义:如果按照拓扑序列中的顶点次序,在开始每一项活动时,能够保证它的所有前驱活动都已完成,从而使整个工程顺序进行,不会出现冲突的情况。示例:某专业学生的排课
  5. 拓扑排序算法主要是循环执行以下两步,直到不存在入度为0的顶点为止
    (1) 选择一个入度为0的顶点并输出
    (2) 从AOV网中删除此顶点及所有出边
    循环结束后,若输出的顶点数 < AOV网中的顶点数,则说明图中存在回路,不存在拓扑序列;若相等,输出的顶点序列就是一种拓扑序列

2. 题目信息

  1. 题目来源:PTA / 拼题A
  2. 题目地址:How Long Does It Take

二、解题思路分析

1. 题意理解

  1. 拓扑排序相关问题

1. 1 输入数据

9 12  //图的顶点数和边数,顶点数最大值100,顶点从0开始编号
0 1 6 //边的两个顶点及其权重, 有向图 0-->1
0 2 4
...
7 8 4

1.2 输出数据

  1. 打印最早完成时间;图如果存在回路,打印 ‘Impossible’

2. 思路分析(重点)

  1. 拓扑排序相关问题:判断图中是否存在回路 + 计算出最早完成时间(不严谨的表述就是:边的权值之和的最大值)

三、具体实现

1. 弯路和bug

  1. 使用指针变量时,先申请内存空间,然后再使用
ptrAdjNode N;
N=(ptrAdjNode)malloc(sizeof(struct AdjNodeStructure));

2. 代码框架(重点)

2.1 采用的数据结构

  1. 使用邻接表存储图:图结构如下所示
typedef int vertex;
typedef int wightType;
#define max 100struct EdgeStruc  //边结构
{vertex V1;vertex V2;wightType weight;
};
typedef struct EdgeStruc *ptrEdge; typedef struct AdjNodeStructure *ptrAdjNode;
struct AdjNodeStructure //图顶点的邻接点
{vertex vertexIndex;wightType weight;ptrAdjNode next;
};struct HeadNode //邻接表的头结点
{ptrAdjNode AdjNode;
};
typedef struct HeadNode HeadNodeArray[max];struct GraphStructure //图
{int vertexNumber;int edgeNumber;HeadNodeArray head;
};
typedef struct GraphStructure *ptrGraph;

2.2 程序主体框架

               程序伪码描述
int main()
{	构建图 然后执行拓扑排序即可return 0;
}

2.3 各分支函数

  1. TopSort( ):拓扑排序子函数。拓扑排序算法主要是循环执行以下两步,直到不存在入度为0的顶点为止
    (1) 选择一个入度为0的顶点并输出
    (2) 从AOV网中删除此顶点及所有出边
    循环结束后,若输出的顶点数 < AOV网中的顶点数,则说明图中存在回路,不存在拓扑序列;若相等,输出的顶点序列就是一种拓扑序列
int TopSort()
{int Indegree[Graph->vertexNumber],cnt=0,front,result=0;vertex V;ptrAdjNode W;queue<vertex> q;/* 初始化入度 */for(V=0;V<Graph->vertexNumber;V++)Indegree[V]=0;/*遍历图 得到Indegree[] */for(V=0;V<Graph->vertexNumber;V++){W=Graph->head[V].AdjNode;while(W){Indegree[W->vertexIndex]++;W=W->next;}		} /*将所有入度为0的顶点入列*/for(V=0;V<Graph->vertexNumber;V++) {if(Indegree[V]==0){q.push(V);Earlist[V]=0;}}/*开始进行Top Sort*/while(!q.empty()) {front=q.front();q.pop();cnt++;//TopOrder[cnt++]=front;W=Graph->head[front].AdjNode; while(W) {if(Earlist[W->vertexIndex]<Earlist[front] + W->weight) //计算最早完成时间 Earlist[W->vertexIndex]=Earlist[front]+W->weight; if(--Indegree[W->vertexIndex] == 0){q.push(W->vertexIndex);}	W=W->next;	} }if(cnt!=Graph->vertexNumber)return result;else {  // Earlist数组中的最大值就是最早完成时间for(V=0;V<Graph->vertexNumber;V++)  {if(Earlist[V]>result)result=Earlist[V];}return result;} 
}
  1. BuildGraph( ) :通过邻接表存储图,属于建图的基础练习

3. 完整AC编码

  1. 本文如果对你有帮助,请点赞鼓励 ,谢谢 😊
  2. 如有建议或意见,欢迎留言
#include <queue>
#include <cstdlib>
#include <iostream>
using namespace std;typedef int vertex;
typedef int wightType;
#define max 100struct EdgeStruc
{vertex V1;vertex V2;wightType weight;
};
typedef struct EdgeStruc *ptrEdge; typedef struct AdjNodeStructure *ptrAdjNode;
struct AdjNodeStructure
{vertex vertexIndex;wightType weight;ptrAdjNode next;
};struct HeadNode
{ptrAdjNode AdjNode;
};
typedef struct HeadNode HeadNodeArray[max];struct GraphStructure
{int vertexNumber;int edgeNumber;HeadNodeArray head;
};
typedef struct GraphStructure *ptrGraph;ptrGraph Graph;
int Earlist[max]={0}; //统计最早完成时间 
//vertex TopOrder[max]; //存放拓扑排序的结果void CreateNullNodeGraph();
void BuildGraph();
void insertEdge(ptrEdge Edge);
int TopSort();int main()
{	int result;BuildGraph();result=TopSort();if(!result)cout<<"Impossible";elsecout<<result;return 0;
} int TopSort()
{int Indegree[Graph->vertexNumber],cnt=0,front,result=0;vertex V;ptrAdjNode W;queue<vertex> q;/* 初始化入度 */for(V=0;V<Graph->vertexNumber;V++)Indegree[V]=0;/*遍历图 得到Indegree[] */for(V=0;V<Graph->vertexNumber;V++){W=Graph->head[V].AdjNode;while(W){Indegree[W->vertexIndex]++;W=W->next;}		} /*将所有入度为0的顶点入列*/for(V=0;V<Graph->vertexNumber;V++) {if(Indegree[V]==0){q.push(V);Earlist[V]=0;}}/*开始进行Top Sort*/while(!q.empty()) {front=q.front();q.pop();cnt++;//TopOrder[cnt++]=front;W=Graph->head[front].AdjNode; while(W) {if(Earlist[W->vertexIndex]<Earlist[front] + W->weight) //计算最早完成时间 Earlist[W->vertexIndex]=Earlist[front]+W->weight; if(--Indegree[W->vertexIndex] == 0){q.push(W->vertexIndex);}	W=W->next;	} }if(cnt!=Graph->vertexNumber)return result;else {  // Earlist数组中的最大值就是最早完成时间for(V=0;V<Graph->vertexNumber;V++)  {if(Earlist[V]>result)result=Earlist[V];}return result;} 
}void CreateNullNodeGraph()
{Graph=(ptrGraph)malloc(sizeof(struct GraphStructure));cin>>Graph->vertexNumber>>Graph->edgeNumber;for(int i=0;i<Graph->vertexNumber;i++){Graph->head[i].AdjNode=NULL;}
}void BuildGraph()
{ptrEdge Edge;  CreateNullNodeGraph();for(int i=0;i<Graph->edgeNumber;i++){Edge=(ptrEdge)malloc(sizeof(struct EdgeStruc));cin>>Edge->V1>>Edge->V2>>Edge->weight;insertEdge(Edge);	}return;
}void insertEdge(ptrEdge Edge)
{ptrAdjNode N;N=(ptrAdjNode)malloc(sizeof(struct AdjNodeStructure));N->vertexIndex=Edge->V2;N->weight=Edge->weight;N->next=Graph->head[Edge->V1].AdjNode;Graph->head[Edge->V1].AdjNode=N;return;
}

四、参考

  1. 浙江大学 陈越、何钦铭老师主讲的数据结构

这篇关于PTA How Long Does It Take 思路分析及代码解析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/858841

相关文章

Java 接口定义变量的示例代码

《Java接口定义变量的示例代码》文章介绍了Java接口中的变量和方法,接口中的变量必须是publicstaticfinal的,用于定义常量,而方法默认是publicabstract的,必须由实现类... 在 Java 中,接口是一种抽象类型,用于定义类必须实现的方法。接口可以包含常量和方法,但不能包含实例

C++ 右值引用(rvalue references)与移动语义(move semantics)深度解析

《C++右值引用(rvaluereferences)与移动语义(movesemantics)深度解析》文章主要介绍了C++右值引用和移动语义的设计动机、基本概念、实现方式以及在实际编程中的应用,... 目录一、右值引用(rvalue references)与移动语义(move semantics)设计动机1

MySQL 筛选条件放 ON后 vs 放 WHERE 后的区别解析

《MySQL筛选条件放ON后vs放WHERE后的区别解析》文章解释了在MySQL中,将筛选条件放在ON和WHERE中的区别,文章通过几个场景说明了ON和WHERE的区别,并总结了ON用于关... 今天我们来讲讲数据库筛选条件放 ON 后和放 WHERE 后的区别。ON 决定如何 "连接" 表,WHERE

使用Redis实现会话管理的示例代码

《使用Redis实现会话管理的示例代码》文章介绍了如何使用Redis实现会话管理,包括会话的创建、读取、更新和删除操作,通过设置会话超时时间并重置,可以确保会话在用户持续活动期间不会过期,此外,展示了... 目录1. 会话管理的基本概念2. 使用Redis实现会话管理2.1 引入依赖2.2 会话管理基本操作

Springboot请求和响应相关注解及使用场景分析

《Springboot请求和响应相关注解及使用场景分析》本文介绍了SpringBoot中用于处理HTTP请求和构建HTTP响应的常用注解,包括@RequestMapping、@RequestParam... 目录1. 请求处理注解@RequestMapping@GetMapping, @PostMappin

mybatis-plus分表实现案例(附示例代码)

《mybatis-plus分表实现案例(附示例代码)》MyBatis-Plus是一个MyBatis的增强工具,在MyBatis的基础上只做增强不做改变,为简化开发、提高效率而生,:本文主要介绍my... 目录文档说明数据库水平分表思路1. 为什么要水平分表2. 核心设计要点3.基于数据库水平分表注意事项示例

Mybatis的mapper文件中#和$的区别示例解析

《Mybatis的mapper文件中#和$的区别示例解析》MyBatis的mapper文件中,#{}和${}是两种参数占位符,核心差异在于参数解析方式、SQL注入风险、适用场景,以下从底层原理、使用场... 目录MyBATis 中 mapper 文件里 #{} 与 ${} 的核心区别一、核心区别对比表二、底

Nginx服务器部署详细代码实例

《Nginx服务器部署详细代码实例》Nginx是一个高性能的HTTP和反向代理web服务器,同时也提供了IMAP/POP3/SMTP服务,:本文主要介绍Nginx服务器部署的相关资料,文中通过代码... 目录Nginx 服务器SSL/TLS 配置动态脚本反向代理总结Nginx 服务器Nginx是一个‌高性

HTML5的input标签的`type`属性值详解和代码示例

《HTML5的input标签的`type`属性值详解和代码示例》HTML5的`input`标签提供了多种`type`属性值,用于创建不同类型的输入控件,满足用户输入的多样化需求,从文本输入、密码输入、... 目录一、引言二、文本类输入类型2.1 text2.2 password2.3 textarea(严格

Agent开发核心技术解析以及现代Agent架构设计

《Agent开发核心技术解析以及现代Agent架构设计》在人工智能领域,Agent并非一个全新的概念,但在大模型时代,它被赋予了全新的生命力,简单来说,Agent是一个能够自主感知环境、理解任务、制定... 目录一、回归本源:到底什么是Agent?二、核心链路拆解:Agent的"大脑"与"四肢"1. 规划模