用Python机器学习模型预测世界杯结果靠谱吗?

2024-03-29 01:44

本文主要是介绍用Python机器学习模型预测世界杯结果靠谱吗?,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

看到kaggle、medium上有不少人用球队的历史数据来进行建模预测,比如用到泊松分布、决策树、逻辑回归等算法,很大程度上能反映强者恒强的现象,比如巴西、英格兰等大概率能进8强,就像高考模拟考试成绩越好,大概率高考也会考得好。

这个和人脑的预测是类似的,建立在你看了足够多的球赛,对每一个国家队、球员、教练、打法等都了如指掌,你才能有充分的判断依据。而且你还不能带有主观的倾向,意大利球迷肯定笃定意大利能夺冠,但他们在预选赛就被淘汰了。

但是阿根廷输沙特、德国输日本这样的黑天鹅事件,不管是AI还是人脑都是没法预测的,否则真成预言者了。买阿根廷、德国赢的人其实是选择了大概率事件,但并没有发生,他们的决策其实是对的。

因为世界杯比赛有很多变动因素,比如裁判规则、球员伤退、排兵布阵,甚至当地环境、食宿也都会有影响,所以在进行AI预测的时候,需要有很多维度的数据进行综合分析,单单从球队的历史成绩来判断,肯定是对准确率会有影响。

这其实是有贝叶斯定理的逻辑在里面,大胆假设,小心求证。

说了一大堆,还没讲如何用AI来预测。我前几天在kaggle看到过一个博主用了GBM梯度提升算法,它通过求损失函数在梯度方向下降的方法,层层改进。

大概描述下步骤:

1、数据准备。

该项目用了【FIFA 1992-2022世界排名】、【1872-2022国家队比赛结果】两个数据集。通过数据预处理对两个数据源进行连接

2、特征工程。

列出对预测比赛结果有影响的特征字段,共37个。特征选取主要根据历史经验、直觉判断,比如过去的比赛积分、过去的进球和损失、比赛的重要性、球队排名、团队排名提升等等。

接着要对各个特征进行相关性检测,判断对预测是否有帮助,如果没有帮助的特征则直接剔除。最后留下11个最重要的特征,用来建模分析。

3、建立模型。

数据处理了,接下来是通过机器学习模型对数据进行训练,然后得出预测结果。

这里用了梯度提升和决策树两个算法,最终选recall最高的,博主测试后选择了梯度提升算法。

算法具体使用操作方法如下:

4、预测世界杯比赛。

搭建好模型,就可以把世界比赛的对阵数据放到模型里进行预测。最终算出来小组赛、十六强赛、八强赛、四强赛、总决赛的得分情况。

从目前看,预测结果其实还是复制历史经验,小组出线情况基本和世界排名情况一致,没有超乎人的经验范围。对于黑马、黑天鹅并没有什么预测能力。

其他预测结果就不一一展示了,哦,最后好像预测是巴西夺冠概率较大。

总之,AI预测世界杯其实是对历史数据的归纳总结,而且完全依赖数据的喂养,能给出相对概率。

这和人的直觉一样,你觉得巴西会夺冠,肯定有一些过往的事实验证了你的直觉,不然就是瞎猜了。

这篇关于用Python机器学习模型预测世界杯结果靠谱吗?的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/857268

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了