使用pandas替代Excel中的繁琐操作-条件判别和loc函数使用

2024-03-28 14:32

本文主要是介绍使用pandas替代Excel中的繁琐操作-条件判别和loc函数使用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

欢迎关注微信公众号:excelwork

 使用Excel进行数据分析,有些数据总要经过很多步操作实现,而在操作过程中,如果对Excel理解不深,又很难掌控。这种时候,我们唯一要做的,就是用最简单的方式解决它。

    以下介绍会包括:数据替换(使用replace函数及条件判别)、数据切割(loc及iloc函数)

01

数据替换

1.1 简单替换

    比如,把空值替换成0,把字符a替换成字符b等诸如此类操作

   pandas有replace函数,可直接使用。

import numpy as np #导入numpyprint(data.replace(np.nan,'0'))

    可以看到,col_c列中的空值被替换成了0。不过,如果此处先进行处理,再进行输出,并不会得到想要的结果,因为原来的对象data并未发生改变,而是生成了一个新的对象。

    而如果必须这么操作,并实现替换的话,可以用replace中的参数inplace=True来完成。

data.replace(np.nan,'0',inplace=True)print(data)

结果如下:

1.2 条件替换

1.2.1 将a列中小于5的数值,用B列替换

data.loc[data.col_a<5,'col_a']=data.col_b

    可以看到,col_a列中的第1~3行小于5的都被col_b列数据替换。

1.2.2 将a列中小于b列的数值,用c列替换

data.loc[data.col_a<data.col_b,'col_a']=data.col_c

1.2.3 当a列小于b列时,对当前行的部分列进行替换

    若col_a列数值小于col_b列,则col_a和col_c列的数值都要被替换成col_b列数值。

data.loc[data.col_c<data.col_e,['col_a','col_b']]=data.col_e

 

02

数据查找

    我们经常会因为需要拿到想要的数据,而需要多次筛选数据,并保留筛选结果,那如何一次性输出想要的数据集呢?

2.1 标签索引

    通过loc函数行标签选择,逗号左侧是行选择,右侧是列选择。

2.1.1 获取某行某列对应的值

    获取第一列和第一行对应的值

print(data.loc['row_1','col_a'])

结果:3

2.1.2 获取连续行、列对应的值

    获取第1~3行和第1~2列对应的值

print(data.loc['row_1:row_3','col_a:col_b'])

结果:

2.1.3 获取不连续行、列对应的值

    获取第1,3行和第1,3,5列对应的值

print(data.loc[['row_1','row_3'],['col_a','col_c','col_e']])

结果:

2.2 位置索引

    通过iloc函数行位置选择,位置为整数索引。同样,逗号左侧是行选择,右侧是列选择。用法基本同标签索引,只不过比标签较少了输入,只需要输入整数即可。(左闭右开)

2.1.1 获取某行某列对应的值

    获取第二列和第二行对应的值

print(data.loc[1,1])

结果:5

2.1.2 获取连续行或列的值

    获取前三行数据(索引0,1,2)

print(data.iloc[:3])

 

    获取第三行之后的数据,也就是第四行和第五行。(索引3及以上)

print(data.iloc[3:])

 

2.3 多条件查找

    获取a列大于5但是b列小于20的数据(注意条件加括号:因为比较运算符优先级低于按位与&,加上括号后,提高了优先级)。

print(data[(data.col_a>5)&(data.col_b<20)])

 

这篇关于使用pandas替代Excel中的繁琐操作-条件判别和loc函数使用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/855871

相关文章

Python调用Orator ORM进行数据库操作

《Python调用OratorORM进行数据库操作》OratorORM是一个功能丰富且灵活的PythonORM库,旨在简化数据库操作,它支持多种数据库并提供了简洁且直观的API,下面我们就... 目录Orator ORM 主要特点安装使用示例总结Orator ORM 是一个功能丰富且灵活的 python O

Java中String字符串使用避坑指南

《Java中String字符串使用避坑指南》Java中的String字符串是我们日常编程中用得最多的类之一,看似简单的String使用,却隐藏着不少“坑”,如果不注意,可能会导致性能问题、意外的错误容... 目录8个避坑点如下:1. 字符串的不可变性:每次修改都创建新对象2. 使用 == 比较字符串,陷阱满

Python使用国内镜像加速pip安装的方法讲解

《Python使用国内镜像加速pip安装的方法讲解》在Python开发中,pip是一个非常重要的工具,用于安装和管理Python的第三方库,然而,在国内使用pip安装依赖时,往往会因为网络问题而导致速... 目录一、pip 工具简介1. 什么是 pip?2. 什么是 -i 参数?二、国内镜像源的选择三、如何

使用C++实现链表元素的反转

《使用C++实现链表元素的反转》反转链表是链表操作中一个经典的问题,也是面试中常见的考题,本文将从思路到实现一步步地讲解如何实现链表的反转,帮助初学者理解这一操作,我们将使用C++代码演示具体实现,同... 目录问题定义思路分析代码实现带头节点的链表代码讲解其他实现方式时间和空间复杂度分析总结问题定义给定

Linux使用nload监控网络流量的方法

《Linux使用nload监控网络流量的方法》Linux中的nload命令是一个用于实时监控网络流量的工具,它提供了传入和传出流量的可视化表示,帮助用户一目了然地了解网络活动,本文给大家介绍了Linu... 目录简介安装示例用法基础用法指定网络接口限制显示特定流量类型指定刷新率设置流量速率的显示单位监控多个

JavaScript中的reduce方法执行过程、使用场景及进阶用法

《JavaScript中的reduce方法执行过程、使用场景及进阶用法》:本文主要介绍JavaScript中的reduce方法执行过程、使用场景及进阶用法的相关资料,reduce是JavaScri... 目录1. 什么是reduce2. reduce语法2.1 语法2.2 参数说明3. reduce执行过程

如何使用Java实现请求deepseek

《如何使用Java实现请求deepseek》这篇文章主要为大家详细介绍了如何使用Java实现请求deepseek功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1.deepseek的api创建2.Java实现请求deepseek2.1 pom文件2.2 json转化文件2.2

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

C++ Primer 多维数组的使用

《C++Primer多维数组的使用》本文主要介绍了多维数组在C++语言中的定义、初始化、下标引用以及使用范围for语句处理多维数组的方法,具有一定的参考价值,感兴趣的可以了解一下... 目录多维数组多维数组的初始化多维数组的下标引用使用范围for语句处理多维数组指针和多维数组多维数组严格来说,C++语言没

在 Spring Boot 中使用 @Autowired和 @Bean注解的示例详解

《在SpringBoot中使用@Autowired和@Bean注解的示例详解》本文通过一个示例演示了如何在SpringBoot中使用@Autowired和@Bean注解进行依赖注入和Bean... 目录在 Spring Boot 中使用 @Autowired 和 @Bean 注解示例背景1. 定义 Stud