pandas常用函数学习,从文件读取输出过程中学会处理数据

本文主要是介绍pandas常用函数学习,从文件读取输出过程中学会处理数据,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

欢迎关注微信公众号:excelwork

 上一篇文章通过一些简单的例子了解了pandas,今天将重点介绍下pandas读取数据常用的函数:read_csv,并通过to_csv函数输出数据到文件辅助理解。read_csv可用来读取url和带有分隔符csv格式文件等,参数如下:

pandas.read_csv(filepath_or_buffer:Union[str,pathlib.Path,IO[~AnyStr]],sep=',',delimiter=None,header='infer',names=None,index_col=None,usecols=None,squeeze=False,prefix=None,mangle_dupe_cols=True,dtype=None,engine=None,converters=None,true_values=None,false_values=None,skipinitialspace=False,skiprows=None,skipfooter=0,nrows=None,na_values=None,keep_default_na=True,na_filter=True,verbose=False,skip_blank_lines=True,parse_dates=False,infer_datetime_format=False,keep_date_col=False,date_parser=None,dayfirst=False,cache_dates=True,iterator=False,chunksize=None,compression='infer',thousands=None,decimal:str='.',lineterminator=None,quotechar='"',quoting=0,doublequote=True,escapechar=None,comment=None,encoding=None,dialect=None,error_bad_lines=True,warn_bad_lines=True,delim_whitespace=False,low_memory=True,memory_map=False, float_precision=None)

    充分理解读取函数的参数,有助于我们在第一步读取阶段,就可以将数据问题处理一大半。

一、数据读取看一下结构

    参数先默认,直接使用read_csv函数读取全部数据,如下图(用截图excel文件内容展示):

data=pd.read_csv(r'C:\Users\king\Desktop\示例数据.csv')
print (data)

 

二、过滤多余行,获取红框中数据内容

    除了红框内标准数据,前6行和后7行数据我们是不需要的。

2.1 先使用skiprows参数跳过前6行

data=pd.read_csv(r'C:\Users\king\Desktop\示例数据.csv',skiprows=6)
data.to_csv(r'C:\Users\king\Desktop\skiprows_1.csv')#输出到excel方便大家阅读体验

    结果如下:如红框中所示,乱码了,咱接着往后看如何解决~

2.2 输出文件中文乱码

    上面输出数据中文乱码,我们使用encoding参数将格式转成gbk,如下图黄框所示,中文内容输出后正常。

data=pd.read_csv(r'C:\Users\king\Desktop\示例数据.csv',skiprows=6)
data.to_csv(r'C:\Users\king\Desktop\skiprows_1.csv',encoding='gbk')

2.3 使用skipfooter过滤后7行​​​​​​​

data=pd.read_csv(r'C:\Users\king\Desktop\示例数据.csv',skiprows=6,skipfooter=7,encoding='utf-8',engine='python')
data.to_csv(r'C:\Users\king\Desktop\skiprows_2.csv',encoding='gbk')

    嗯~又报错了看上去还是编码问题~解决它!

UnicodeEncodeError: 'gbk' codec can't encode character '\ufffd' in position 23: illegal multibyte sequence

2.4 使用skipfooter报错解决

    我们在读取时encoding='utf-8'再次尝试,没问题,不过出现了警告,根据警告提示,我们读取时限定下engine='python'即可。

ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support skipfooter; you can avoid this warning by specifying engine='python'.​​​​​​​

data=pd.read_csv(r'C:\Users\king\Desktop\示例数据.csv',skiprows=6,skipfooter=7,encoding='utf-8',engine='python')
data.to_csv(r'C:\Users\king\Desktop\kingskiprows_2.csv',encoding='gbk')

    结果如下:

 

三 修改表结构

3.1 修改表头名

    我们看到,表头还包含括号,不便于后续调用列,所以我们在读取时就处理好。

3.1.1 跳过原有标题行,自定义列名

    因为之前输出文件名skiprows_2的文件时,编码是gbk,所以读取skiprows_2文件的时候,encoding=‘gbk'。​​​​​​​

data=pd.read_csv(r'C:\Users\king\Desktop\skiprows_2.csv',skiprows=1,encoding='gbk',engine='python',names=['震级','时刻','纬度','经度','深度','位置'])
data.to_csv(r'C:\Users\king\Desktop\skiprows_3.csv',encoding='gbk'

3.2 避免每次读取增加索引列

    如上图前两列重复,我们最多需要一列这种索引列,如何去除多余列?

此次读取skiprows_2文件里,设置索引列为空,参数index_col=False即可。​​​​​​​

data=pd.read_csv(r'C:\Users\king\Desktop\skiprows_2.csv',skiprows=1,encoding='gbk',engine='python',names=['震级','时刻','纬度','经度','深度','位置'])
data.index_col=False
data.to_csv(r'C:\Users\king\Desktop\skiprows_3.csv',encoding='gbk')

四、数据处理

4.1 空值处理

    如果源文件里空值存成了NULL,想显示空即可,参数na_values​​​​​​​

data=pd.read_csv(r'C:\Users\king\Desktop\skiprows_3.csv',encoding='gbk',engine='python',na_values='')data.to_csv(r'C:\Users\king\Desktop\skiprows_4.csv',encoding='gbk')

4.2 大文件处理

    当数据过大,导致读取过慢,可通过参数chunksize限制数据块大小。

 

data=pd.read_csv(r'C:\Users\king\Desktop\skiprows_3.csv',chunksize=10000)

这篇关于pandas常用函数学习,从文件读取输出过程中学会处理数据的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/855864

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

浅析Spring Security认证过程

类图 为了方便理解Spring Security认证流程,特意画了如下的类图,包含相关的核心认证类 概述 核心验证器 AuthenticationManager 该对象提供了认证方法的入口,接收一个Authentiaton对象作为参数; public interface AuthenticationManager {Authentication authenticate(Authenti

JS常用组件收集

收集了一些平时遇到的前端比较优秀的组件,方便以后开发的时候查找!!! 函数工具: Lodash 页面固定: stickUp、jQuery.Pin 轮播: unslider、swiper 开关: switch 复选框: icheck 气泡: grumble 隐藏元素: Headroom

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

无人叉车3d激光slam多房间建图定位异常处理方案-墙体画线地图切分方案

墙体画线地图切分方案 针对问题:墙体两侧特征混淆误匹配,导致建图和定位偏差,表现为过门跳变、外月台走歪等 ·解决思路:预期的根治方案IGICP需要较长时间完成上线,先使用切分地图的工程化方案,即墙体两侧切分为不同地图,在某一侧只使用该侧地图进行定位 方案思路 切分原理:切分地图基于关键帧位置,而非点云。 理论基础:光照是直线的,一帧点云必定只能照射到墙的一侧,无法同时照到两侧实践考虑:关

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo