基于STC12C5A60S2系列1T 8051单片机的按键单击长按实现互不干扰切换应用(简洁好用 可做借鉴)

本文主要是介绍基于STC12C5A60S2系列1T 8051单片机的按键单击长按实现互不干扰切换应用(简洁好用 可做借鉴),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

基于STC12C5A60S2系列1T 8051单片机的按键单击长按通过按下次数实现互不干扰切换应用

  • STC12C5A60S2系列1T 8051单片机管脚图
  • STC12C5A60S2系列1T 8051单片机I/O口各种不同工作模式及配置
  • STC12C5A60S2系列1T 8051单片机I/O口各种不同工作模式介绍
      • 基于STC12C5A60S2系列1T 8051单片机的按键单击长按通过按下次数实现互不干扰切换

STC12C5A60S2系列1T 8051单片机管脚图

在这里插入图片描述在这里插入图片描述

STC12C5A60S2系列1T 8051单片机I/O口各种不同工作模式及配置

在这里插入图片描述

STC12C5A60S2系列1T 8051单片机I/O口各种不同工作模式介绍

在这里插入图片描述在这里插入图片描述

基于STC12C5A60S2系列1T 8051单片机的按键单击长按通过按下次数实现互不干扰切换

main.c

#include "STC12C5A60S2.h"  
#include "Timer0.h"
#include "Key.h"
#include "Digitron.h"
sbit LED = P1^2;//位定义LED灯为单片机P1.2脚void main()//主函数
{Timer0Init();//定时器0的16位定时模式1用12分频定时2ms初始化函数 晶振为12MHzDigitronBootDisplay();//数码管开机显示函数while(1)//主循环{KeyScanResult();//按键扫描结果函数}} 

Key.c

#include "Key.h"
#include "Timer0.h"
#define	uchar unsigned char	//定义无符号字符
#define	uint  unsigned int	//定义无符号整形
#define KeyPressDeshakeTime 15//自定义按键按下消抖时间为20ms	
#define KeyLongPressDelayTime 80//自定义按键长按延时时间为200ms
//uchar ClearKeyPressFlag = 0;//定义清零按键按下标志位变量为0
//uchar SetKeyFlag = 0;//定义设置按键标志位变量为0
//uchar SetKeyPressCountFlag = 1;//定义设置按键按下计数标志位变量为1
uchar SetKeyShortPressLcokFlag = 0;//定义设置按键短按按下锁定标志位变量为0
//uchar SetKeyShortPressCount = 0;//定义设置按键短按按下计数变量为0
//uchar SetKeyShortPressFlag = 0;//定义设置按键短按按下标志位变量为0
//uchar SetKeyShortPressCountFlag = 1;//定义设置按键短按按下计数标志位变量为1
//uchar SetKeyLongPressLcokFlag = 0;//定义设置按键长按按下锁定标志位变量为0
//uchar SetKeyLongPressCount = 0;//定义设置按键长按按下计数变量为0
//uchar SetKeyLongPressFlag = 0;//定义设置按键长按按下标志位变量为0
//uint  SetKeyLongPressCountFlag = 1;//定义设置按键长按按下计数标志位变量为0
uint  KeyPressDelayTime = 0;//定义按键按下延时时间变量为0
uint  KeyLiftDelayTime = 0;//定义按键弹起延时时间变量为0
uint  KeyPressNumber = 0;//定义按键按下数值变量为0
uint  KeyType = 0;//定义按键类型变量为0
//  uint KeyScan ()//带按键返回值的按键扫描函数void KeyScan ()//按键扫描函数
{  if(SetKey==0)//设置按键按下{	  KeyPressDelayTime++;//按键按下延时时间变量自加if(KeyPressDelayTime < KeyPressDeshakeTime)//判断按键按下延时时间变量是否小于按键按下消抖时间{SetKeyShortPressLcokFlag = 1;//设置按键短按按下锁定标志位变量置1 防止设置按键长按时进入短按 从而实现短按与长按互不干扰}if(KeyPressDelayTime > KeyLongPressDelayTime)//判断按键按下延时时间变量是否大于按键长按延时时间 此处是长按{KeyPressDelayTime = 0;//按键按下延时时间变量清0SetKeyShortPressLcokFlag = 0;//设置按键短按按下锁定标志位变量置0 为下一步设置按键短按做准备
//     KeyPressNumber++;//按键按下数值变量自加 对于按键计数 建议要放在按键弹起后再计数 此处就是KeyType = 1;//此处是长按}}else if((KeyPressDelayTime > KeyPressDeshakeTime) && (SetKeyShortPressLcokFlag == 0))//判断按键按下延时时间变量是否大于按键按下消抖时间与设置按键短按按下锁定标志位变量是否为0 此处是短按{KeyPressDelayTime = 0;//按键按下延时时间变量清0
//	  KeyPressNumber++;//按键按下数值变量自加 对于按键计数 建议要放在按键弹起后再计数 此处就是KeyType = 1;//此处是短按}else//设置按键弹起 {}	} void KeyScanResult()//按键扫描结果函数
{switch(KeyType)//按键类型筛选位{case 1 ://单击或连击增加触发位KeyPressNumber++;//按键按下数值自加if(KeyPressNumber > 9999)//如果按键按下数值大于9999{KeyPressNumber = 0;//按键按下数值清0}KeyType = 0;//按键类型清0break;//跳出
//    case 2 ://单击或连击减少触发位
//            KeyPressNumber--;//按键按下数值自减
//            if(KeyPressNumber == 0 | KeyPressNumber == 65535)//如果按键按下数值等于0或65535
//           {
//             KeyPressNumber = 0;//按键按下数值置0
//            }
//					  KeyType = 0;//按键类型清0
//            break;//跳出
//	  case 3 ://长按触发位
//            KeyPressNumber++;//按键按下数值自加
//            if(KeyPressNumber > 9999)//如果按键按下数值大于9999
//          {
//             KeyPressNumber = 0;//按键按下数值清0
//           }
//            KeyType = 0;//按键类型清0
//            break;//跳出default:break;//跳出}}

Key.h

#ifndef  _KEY_H
#define  _KEY_H
#include "STC12C5A60S2.h"
#define	uchar unsigned char	//定义无符号字符
#define	uint  unsigned int	//定义无符号整形
//sbit AddKey = P3^5;//增加按键
//sbit DecKey = P3^4;//减少按键
sbit SetKey = P3^3;//设置按键
sbit ClearKey = P3^2;//复位按键
sbit led0 = P1^5;//短按LED指示灯
sbit led1 = P1^6;//长按LED指示灯
sbit led2 = P1^7;//复位LED指示灯
//extern uchar ClearKeyPressFlag;//声明清零按键按下标志位变量
//extern uchar SetKeyFlag;//声明设置按键标志位变量
//extern uchar SetKeyPressCountFlag;//声明设置按键按下计数标志位变量
extern uchar SetKeyShortPressLcokFlag;//声明设置按键短按按下锁定标志位变量
//extern uchar SetKeyShortPressCount;//声明设置按键短按按下计数变量
//extern uchar SetKeyShortPressFlag;//声明设置按键短按按下标志位变量置
//extern uchar SetKeyShortPressCountFlag;//声明设置按键短按按下计数标志位变量
//extern uchar SetKeyLongPressLcokFlag;//声明设置按键长按按下锁定标志位变量
//extern uchar SetKeyLongPressCount;//声明设置按键长按按下计数变量
//extern uchar SetKeyLongPressFlag;//声明设置按键长按按下标志位变量
//extern uint  SetKeyLongPressCountFlag;//声明设置按键长按按下计数标志位变量
extern uint KeyPressDelayTime;//声明按键按下延时时间变量 可被其他.c文件通过#include "其他.h"引用该变量
extern uint  KeyLiftDelayTime;//声明按键弹起延时时间变量
extern uint  KeyPressNumber;//声明按键按下数值变量
extern uint  KeyType;//声明按键类型变量
void KeyScan ();//按键扫描函数
//extern uint KeyScan ();//带有按键返回值的按键扫描函数
void KeyScanResult();//按键扫描结果函数
#endif 

Digitron.c

#include "Digitron.h"
//#include "Key.h"
#include "Timer0.h" 
#define uchar unsigned char//自定义无符号字符型为uchar
#define uint unsigned int//自定义无符号整数型为uint
//uchar code DigitronBitCodeArray[] = {0x01,0x02,0x04,0x08,0x10,0x20,0x40,0x80};//定义八位共阴数码管位码数组变量 为什么不是{0xfe,0xfd,0xfb,0xf7,0xef,0xdf,0xbf,0x7f} 这才是定义八位共阴数码管位码数组变量 不对吗? 在不使用NPN三极管驱动 用单片机端口直接连接驱动 位码数组是对的 但数码管亮度不够 因此使用了NPN型三极管(比如S8050)来驱动共阴数码管位选 NPN型三极管(比如S8550)基极输入高电平才能导通 解释:共阴数码管 阴极是公共端 对应位选 低电平选通 阳极是显示端 对应段选 高电平选通 由于共阴数码管阴极公共端接单片机来驱动共阴数码管阳极显示端 共阴数码管的亮度会比较低 需要借助NPN型三极管的集电极连接共阴数码管阴极公共端 而NPN型三极管的基电极串个限流电阻连接单片机端口 通过单片机端口输出高电平到NPN型三极管的基电极 从而导通NPN型三极管 放大流过共阴数码管的电流 这样共阴数码管的亮度才会比较亮    
//uchar code DigitronSegmentCodeArray[] = {0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f,0x77,0x7c,0x39,0x5e,0x79,0x71,0x40,0x00};//定义共阴数码管显示0到F数据及符号“—”及熄灭数组变量
//uchar code DigitronSegmentCodeOfPointArray[] = {0xbf,0x86,0xdb,0xcf,0xe6,0xed,0xfd,0x87,0xff,0xef,0xf7,0xfc,0xb9,0xde,0xf9,0xf1,0x40,0x00};//定义带小数点共阴数码管显示0.到F.数据及符号“—”及熄灭数组变量
uchar code DigitronBitCodeArray[] = {0xfe,0xfd,0xfb,0xf7,0xef,0xdf,0xbf,0x7f};//定义八位共阳数码管位码数组变量 为什么不是{0x01,0x02,0x04,0x08,0x10,0x20,0x40,0x80} 这才是定义八位共阳数码管位码数组变量 不对吗? 在不使用PNP三极管驱动 用单片机端口直接连接驱动 位码数组是对的 但数码管亮度不够 因此使用了PNP型三极管(比如S8550)来驱动共阳数码管位选 PNP型三极管(比如S8550)基极输入低电平才能导通 解释:共阳数码管 阳极是公共端 对应位选 高电平选通 阴极是显示端 对应段选 低电平选通 由于共阳数码管阳极公共端接单片机来驱动共阳数码管阴极显示端 共阳数码管的亮度会比较低 需要借助PNP型三极管的集电极连接共阳数码管阳极公共端 而PNP型三极管的基电极串个限流电阻连接单片机端口 通过单片机端口输出低电平到PNP型三极管的基电极 从而导通PNP型三极管 由外接电源来驱动共阳数码管 这样共阳数码管的亮度才会比较亮    
uchar code DigitronSegmentCodeArray[] = {0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90,0x88,0x83,0xc6,0xa1,0x86,0x8e,0xbf,0xff};//定义共阳数码管显示0到F数据及符号“—”及熄灭数组变量
//uchar code DigitronSegmentCodeOfPointArray[] = {0x40,0x79,0x24,0x30,0x19,0x12,0x02,0x78,0x00,0x10,0x08,0x03,0x46,0x21,0x06,0x0e,0xbf,0xff};//定义带小数点共阳数码管显示0.到F.数据及符号“—”及熄灭数组变量
uchar DigitronCacheDataArray[] = {0,0,0,0};//定义共阳数码管缓存数据数组变量
uchar DigitronBootTimerFlag = 1;//定义共阳数码管开机时间标志位变量 
uint  DigitronBootTimer = 0;//定义数码管开机时间变量
//extern uchar Data;//取用外部定义的数据变量
//extern uint KeyPressNumber;//如果在Key.c文件下已经定义按键按下数值变量KeyPressNumber 则以此语句来引用Key.c文件下的按键按下数值变量KeyPressNumber 否则先在Key.c文件下定义按键按下数值变量KeyPressNumber 接着在Key.h文件下的用extern关键字声明按键按下数值变量KeyPressNumber 最后通过在其他.c文件下#include "Key.h" 就可以引用在Key.c文件下已经定义的按键按下数值变量KeyPressNumbervoid DigitronBootDisplay()//数码管开机显示函数
{do{//if(DigitronBootTimer == 500 )//如果数码管开机时间等于1sLED0 = ~ LED0;//LED灯亮灭更新}while(DigitronBootTimer <= 500);//当数码管开机时间小于5sDigitronBootTimerFlag = 0;//数码管开机时间标志位清0LED0 = 1;//LED灯熄灭}void DigitronDisplayDataSplit()//数码管显示数据分解函数
{DigitronCacheDataArray[0] = KeyPressNumber / 1000;//数码管千位数据显示DigitronCacheDataArray[1] = KeyPressNumber / 100 % 10;//数码管百位数据显示DigitronCacheDataArray[2] = KeyPressNumber / 10 % 10;//数码管十位数据显示DigitronCacheDataArray[3] = KeyPressNumber % 10;//数码管个位数据显示//	 DigitronCacheDataArray[0] = Data / 1000;//数码管千位数据显示
//   DigitronCacheDataArray[1] = Data / 100 % 10;//数码管百位数据显示
//   DigitronCacheDataArray[2] = Data / 10 % 10;//数码管十位数据显示
//   DigitronCacheDataArray[3] = Data % 10;//数码管个位数据显示if(KeyPressNumber < 1000)//如果累积时间变量小于1000{DigitronCacheDataArray[0] = 17;//数码管千位数据不显示}else{DigitronCacheDataArray[0] = KeyPressNumber / 1000;//数码管千位数据显示}if(KeyPressNumber < 100)//如果累积时间变量小于100{DigitronCacheDataArray[1] = 17;//数码管百位数据不显示}else{DigitronCacheDataArray[1] = KeyPressNumber / 100 % 10;//数码管百位数据显示}if(KeyPressNumber < 10)//如果累积时间变量小于10{DigitronCacheDataArray[2] = 17;//数码管十位数据不显示}else{DigitronCacheDataArray[2] = KeyPressNumber / 10 % 10;//数码管十位数据显示}DigitronCacheDataArray[3] = KeyPressNumber % 10;//数码管个位数据显示}void DigitronDisplayData()//数码管显示数据函数  
{  static uchar i = 0;//定义静态数码管管位变化变量switch(i)//数码管管位变化筛选{case 0 ://数码管千位显示DigitronSegmentCode = 0xff;//数码管段码消影DigitronSegmentCode = DigitronSegmentCodeArray[DigitronCacheDataArray[0]];//数码管千位的段码显示DigitronBitCode = DigitronBitCodeArray[0];//数码管千位码显示i++;//数码管管位变化自加1break;//跳出case 1 ://数码管百位显示DigitronSegmentCode = 0xff;//数码管段码消影DigitronSegmentCode = DigitronSegmentCodeArray[DigitronCacheDataArray[1]];//数码管百位的段码显示DigitronBitCode = DigitronBitCodeArray[1];//数码管百位码显示i++;//数码管管位变化自加1break;//跳出 case 2 ://数码管十位显示DigitronSegmentCode = 0xff;//数码管段码消影DigitronSegmentCode = DigitronSegmentCodeArray[DigitronCacheDataArray[2]];//数码管十位的段码显示DigitronBitCode = DigitronBitCodeArray[2];//数码管十位码显示i++;//数码管管位变化自加1break;//跳出case 3 ://数码管个位显示DigitronSegmentCode = 0xff;//数码管段码消影DigitronSegmentCode = DigitronSegmentCodeArray[DigitronCacheDataArray[3]];//数码管个位的段码显示DigitronBitCode = DigitronBitCodeArray[3];//数码管个位码显示i = 0;//数码管管位变化清0break;//跳出default:break;//跳出}}

Digitron.h

#ifndef  _DIGITRON_H
#define  _DIGITRON_H
#include "STC12C5A60S2.h"
#define uchar unsigned char//自定义无符号字符型为uchar
#define uint unsigned int//自定义无符号整数型为uint
#define DigitronSegmentCode P0//自定义共阳数码管段码端口为单片机P0组引脚
#define DigitronBitCode P2//自定义共阳数码管位码端口为单片机P2组引脚
sbit LED0 = P1^0;//位定义LED灯为单片机P1.0脚
extern uchar code DigitronBitCodeArray[];//声明八位共阳数码管位码数组变量 可被其他.c文件通过#include "其他.h"引用该变量
extern uchar code DigitronSegmentCodeArray[];//声明共阳数码管显示0到F数据及符号“—”及熄灭数组变量 可被其他.c文件通过#include "其他.h"引用该变量
extern uchar DigitronCacheDataArray[];//声明共阳数码管缓存数据数组变量 可被其他.c文件通过#include "其他.h"引用该变量
extern uchar DigitronBootTimerFlag;//声明共阳数码管开机时间标志位变量 可被其他.c文件通过#include "其他.h"引用该变量
extern uint DigitronBootTimer;//声明数码管开机时间变量 可被其他.c文件通过#include "其他.h"引用该变量
void DigitronBootDisplay();//声明数码管开机显示函数
void DigitronDisplayDataSplit();//声明数码管显示数据分解函数
void DigitronDisplayData();//声明数码管显示数据函数
#endif 

Timer0.c

#include "Timer0.h"
#include "Key.h"
#include "Digitron.h"
/*****关于通过特殊功能寄存器AUXR设定定时器/计数器模式为1T或12T模式不需分频或需12分频8051系列单片机定时器初值(定时计数初值)计算的知识点*****//****时钟周期(又称振荡周期):单片机晶振频率的倒数 例:单片机晶振频率12MHz 则时钟周期=[1/(12*10^6)Hz]s=0.000000083s=0.000083ms=0.083us机器周期:单片机执行一条指令过程中需要完成一个基本操作(如:取指、译码、执行等基本操作)所需的时间 8051系列单片机的一个机器周期由6个S周期(状态周期)组成 一个时钟周期定义为一个节拍(用P表示) 二个节拍定义为一个状态周期(用S表示) 那么8051单片机的机器周期由6个状态周期组成 也就是说一个机器周期=6个状态周期=12个时钟周期=[12x[1/(12*10^6)Hz]s]s=0.000001s=0.001ms=1us指令周期:单片机取出一条指令且执行完这条指令所需的时间以上三者间的关系:指令周期>机器周期>时钟周期一、以下是8051单片机定时器用12分频计算定时器初值的一种计算公式(以单片机晶振频率为12MHz 定时器0工作模式为16位定时模式1 需要定时1ms来计算):0、计算nT单片机机器周期T公式:T=n*(1/晶振频率)=几us1、一个机器周期=12个时钟周期=12乘以单片机晶振频率的倒数=12*[1/(12*10^6)Hz]s=0.000001s=0.001ms=1us2、定时时间=定时计数*一个机器周期 1ms=定时计数*1us 定时计数=1ms/1us=1000us/1us=1000次3、定时器初值(定时计数初值)=2^n-定时计数 n为几位定时器 此处n=16 则定时器初值(定时计数初值)=2^16-1000=65536-1000=64536 把64536转化成十六进制 拆开成高八位和低八位 高八位放TH0=0xfc或(65536-64536)/256 低八位放TL0=0x18或(65536-64536)%256二、以下是8051单片机定时器用12分频或不分频计算定时器初值的另外一种计算公式(以单片机晶振频率为12MHz 定时器0工作模式为16位定时模式1 需要定时1ms来计算):1、综合公式:定时器初值(定时计数初值)=2^n-(晶振频率/几分频/定时频率) n为几位定时器 该公式常用于脉冲宽度调制中运算 例如:利用8051系列单片机晶振频率为12MHz的定时器0的16位定时模式1来产生1KHz方波脉冲 由此可知:定时时间=1/定时频率=1/1000Hz=0.001s=1ms=1000us 进而可得:定时器初值(定时计数初值)=2^n-(晶振频率/几分频/定时频率)=2^16-(12MHz/12/1KHz)=2^16-(12*10^6)Hz/12/1000Hz)=65536-1000=64536 把64536转化成十六进制 拆开成高八位和低八位 高八位放TH0=0xfc或(65536-64536)/256或Value >> 8 低八位放TL0=0x18或(65536-64536)%256或=Value 2、TH0 = Value >> 8;TL0 = Value;该两句代码解释如下:(1)、TH0 = Value >> 8相当于TH0 = (65536-10000)/256=55536/256=216.9375 分析:65536-10000=55536转化成二进制为11011000 11110000 55536/256=216.9375转化成二进制为11011000 由此可看出Value为(65536-10000)=55536的二进制数11011000 11110000右移8位就可以得到55536/256=216.9375的二进制数11011000(2)、TL0 = Value相当于TL0 = (65536-时器初值的另外一种计算公式(以单片机晶振频率为12MHz 定时器0工作模式为16位定时模式1 需要定时1ms来计算):(一)、以下是8051单片机定时器用12分频计算定时器初值:定时器初值(定时计数初值)=2^n-(晶振频率/几分频/定时频率) n为几位定时器 该公式常用于脉冲宽度调制中运算 例如:利用8051系列单片机晶振频率为12MHz的定时器0的16位定时模式1来产生1KHz方波脉冲(相当于定时1ms) 由此可知:定时时间=1/定时频率=1/1000Hz=0.001s=1ms=1000us 进而可得:定时器初值(定时计数初值)=2^n-(晶振频率/几分频/定时频率)=2^16-(12MHz/12/1KHz)=2^16-(12*10^6)Hz/12/1000Hz)=65536-1000=64536 把64536转化成十六进制 拆开成高八位和低八位 高八位放TH0=0xfc或(65536-64536)/256或Value >> 8 低八位放TL0=0x18或(65536-64536)%256或=Value (二)、以下是8051单片机定时器不用分频计算定时器初值:定时器初值(定时计数初值)=2^n-(晶振频率/几分频/定时频率) n为几位定时器 该公式常用于脉冲宽度调制中运算 例如:利用8051系列单片机晶振频率为12MHz的定时器0的16位定时模式1来产生1KHz方波脉冲(相当于定时1ms) 由此可知:定时时间=1/定时频率=1/1000Hz=0.001s=1ms=1000us 进而可得:定时器初值(定时计数初值)=2^n-(晶振频率/几分频/定时频率)=2^16-(12MHz/1/1KHz)=2^16-(12*10^6)Hz/1/1000Hz)=65536-12000=53536 把53536转化成十六进制 拆开成高八位和低八位 高八位放TH0=0xd1或(65536-53536)/256或Value >> 8 低八位放TL0=0x20或(65536-53536)%256或=Value(三)、TH0 = Value >> 8;TL0 = Value;该两句代码解释如下:1、TH0 = Value >> 8相当于TH0 = (65536-10000)/256=55536/256=216.9375 分析:65536-10000=55536转化成二进制为11011000 11110000 55536/256=216.9375转化成二进制为11011000 由此可看出Value为(65536-10000)=55536的二进制数11011000 11110000右移8位就可以得到55536/256=216.9375的二进制数110110002、TL0 = Value相当于TL0 = (65536-10000)%256=55536%256=240 分析:65536-10000=55536转化成二进制为11011000 11110000 55536%256=240转化成二进制为11110000 由此可看出Value为(65536-10000)=55536的二进制数11011000 11110000取低8位就可以得到55536%256=240的二进制数11110000(四)、由定时器定时初值(定时计数初值)推导出定时器定时时间步骤如下:1、如果定时器定时初值(定时计数初值)是拆开成高八位和低八位赋值形式 如:TH0=0xfc TL0=0x18 先把高八位和低八位赋值组成一个十六位数据0xfc18 转化成十进制数据64536 用2^n-64536算出每秒产生的脉冲数 其中n为几位定时器 再根据公式计算定时时间 如:由公式:每秒产生的脉冲数=晶振频率/几分频/定时频率  转换成:每秒产生的脉冲数=晶振频率x定时频率/几分频 可求:定时频率=(每秒产生的脉冲数x几分频)/晶振频率 进而求出:定时时间=1/定时频率=1/[(每秒产生的脉冲数x几分频)/晶振频率]  转换成:晶振频率/(每秒产生的脉冲数x几分频)=定时时间2、如果定时器定时初值(定时计数初值)是十进制数据 如:64536 直接用2^n-64536算出每秒产生的脉冲数 其中n为几位定时器 再根据公式计算定时时间 如:由公式:每秒产生的脉冲数=晶振频率/几分频/定时频率  转换成:每秒产生的脉冲数=晶振频率x定时频率/几分频 可求:定时频率=(每秒产生的脉冲数x几分频)/晶振频率 进而求出:定时时间=1/定时频率=1/[(每秒产生的脉冲数x几分频)/晶振频率]  转换成:晶振频率/(每秒产生的脉冲数x几分频)=定时时间****/
#define uchar unsigned char//自定义无符号字符型为uchar
#define uint unsigned int//自定义无符号整数型为uintvoid Timer0Init()//定时器0的16位定时模式1用12分频定时2ms初始化函数 晶振为12MHz
{//AUXR &= 0x7f;//设定定时器/计数器模式为12TTMOD &= 0xf0;//设定定时器/计数器工作模式清0TMOD |= 0x01;//设定定时器/计数器为定时器 工作模式为16位定时器0模式1TH0 = 0xf8;//设定定时器0高8位初值TL0 = 0x30;//设定定时器0低8位初值TF0 = 0;//定时器0溢出中断标志位清0ET0 = 1;//打开定时器0中断开关EA = 1;//打开定时器中断总开关TR0 = 1;//打开定时器0开关} void Timer0() interrupt 1//定时器0的16位定时模式1用12分频定时2ms中断函数 晶振为12MHz
{TR0 = 0;//关定时器0开关if(DigitronBootTimerFlag == 1)//数码管开机时间标志位置1{DigitronBootTimer++;//数码管开机时间自加}if(DigitronBootTimerFlag == 0)//判断共阳数码管开机时间标志位是否等于0{ DigitronDisplayDataSplit();//数码管显示数据分解函数DigitronDisplayData();//数码管显示数据函数
//    SetKeyScan();//设置按键扫描函数 该函数放在定时器定时2ms的中断函数中扫描KeyScan();//按键扫描函数 该函数放在定时器定时2ms的中断函数中扫描}TH0 = 0xf8;//设定定时器0计数高8位初值TL0 = 0x30;//设定定时器0计数低8位初值TR0 = 1;//开定时器0开关}

Timer0.h

#ifndef  _TIMER0_H
#define  _TIMER0_H
#include "STC12C5A60S2.h"
#define uchar unsigned char//自定义无符号字符型为uchar
#define uint unsigned int//自定义无符号整数型为uint
void Timer0Init();//声明定时器0初始化函数
#endif 

这篇关于基于STC12C5A60S2系列1T 8051单片机的按键单击长按实现互不干扰切换应用(简洁好用 可做借鉴)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/854876

相关文章

在Ubuntu上部署SpringBoot应用的操作步骤

《在Ubuntu上部署SpringBoot应用的操作步骤》随着云计算和容器化技术的普及,Linux服务器已成为部署Web应用程序的主流平台之一,Java作为一种跨平台的编程语言,具有广泛的应用场景,本... 目录一、部署准备二、安装 Java 环境1. 安装 JDK2. 验证 Java 安装三、安装 mys

python使用watchdog实现文件资源监控

《python使用watchdog实现文件资源监控》watchdog支持跨平台文件资源监控,可以检测指定文件夹下文件及文件夹变动,下面我们来看看Python如何使用watchdog实现文件资源监控吧... python文件监控库watchdogs简介随着Python在各种应用领域中的广泛使用,其生态环境也

el-select下拉选择缓存的实现

《el-select下拉选择缓存的实现》本文主要介绍了在使用el-select实现下拉选择缓存时遇到的问题及解决方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录项目场景:问题描述解决方案:项目场景:从左侧列表中选取字段填入右侧下拉多选框,用户可以对右侧

Python中构建终端应用界面利器Blessed模块的使用

《Python中构建终端应用界面利器Blessed模块的使用》Blessed库作为一个轻量级且功能强大的解决方案,开始在开发者中赢得口碑,今天,我们就一起来探索一下它是如何让终端UI开发变得轻松而高... 目录一、安装与配置:简单、快速、无障碍二、基本功能:从彩色文本到动态交互1. 显示基本内容2. 创建链

Python pyinstaller实现图形化打包工具

《Pythonpyinstaller实现图形化打包工具》:本文主要介绍一个使用PythonPYQT5制作的关于pyinstaller打包工具,代替传统的cmd黑窗口模式打包页面,实现更快捷方便的... 目录1.简介2.运行效果3.相关源码1.简介一个使用python PYQT5制作的关于pyinstall

使用Python实现大文件切片上传及断点续传的方法

《使用Python实现大文件切片上传及断点续传的方法》本文介绍了使用Python实现大文件切片上传及断点续传的方法,包括功能模块划分(获取上传文件接口状态、临时文件夹状态信息、切片上传、切片合并)、整... 目录概要整体架构流程技术细节获取上传文件状态接口获取临时文件夹状态信息接口切片上传功能文件合并功能小

python实现自动登录12306自动抢票功能

《python实现自动登录12306自动抢票功能》随着互联网技术的发展,越来越多的人选择通过网络平台购票,特别是在中国,12306作为官方火车票预订平台,承担了巨大的访问量,对于热门线路或者节假日出行... 目录一、遇到的问题?二、改进三、进阶–展望总结一、遇到的问题?1.url-正确的表头:就是首先ur

C#实现文件读写到SQLite数据库

《C#实现文件读写到SQLite数据库》这篇文章主要为大家详细介绍了使用C#将文件读写到SQLite数据库的几种方法,文中的示例代码讲解详细,感兴趣的小伙伴可以参考一下... 目录1. 使用 BLOB 存储文件2. 存储文件路径3. 分块存储文件《文件读写到SQLite数据库China编程的方法》博客中,介绍了文

Redis主从复制实现原理分析

《Redis主从复制实现原理分析》Redis主从复制通过Sync和CommandPropagate阶段实现数据同步,2.8版本后引入Psync指令,根据复制偏移量进行全量或部分同步,优化了数据传输效率... 目录Redis主DodMIK从复制实现原理实现原理Psync: 2.8版本后总结Redis主从复制实

JAVA利用顺序表实现“杨辉三角”的思路及代码示例

《JAVA利用顺序表实现“杨辉三角”的思路及代码示例》杨辉三角形是中国古代数学的杰出研究成果之一,是我国北宋数学家贾宪于1050年首先发现并使用的,:本文主要介绍JAVA利用顺序表实现杨辉三角的思... 目录一:“杨辉三角”题目链接二:题解代码:三:题解思路:总结一:“杨辉三角”题目链接题目链接:点击这里