802 找到最终的安全状态

2024-03-28 04:44
文章标签 安全 状态 找到 最终 802

本文主要是介绍802 找到最终的安全状态,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题目

有一个有 n 个节点的有向图,节点按 0 到 n - 1 编号。图由一个 索引从 0 开始 的 2D 整数数组 graph表示, graph[i]是与节点 i 相邻的节点的整数数组,这意味着从节点 i 到 graph[i]中的每个节点都有一条边。

如果一个节点没有连出的有向边,则该节点是 终端节点 。如果从该节点开始的所有可能路径都通向 终端节点 ,则该节点为 安全节点 。

返回一个由图中所有 安全节点 组成的数组作为答案。答案数组中的元素应当按 升序 排列。

示例 1:

Illustration of graph

输入: graph = [[1,2],[2,3],[5],[0],[5],[],[]]
输出: [2,4,5,6]
解释: 示意图如上。
节点 5 和节点 6 是终端节点,因为它们都没有出边。
从节点 2、4、5 和 6 开始的所有路径都指向节点 5 或 6 。

解法

这道题的本质究其根本就是寻找有无环路,如果一道题目需要检测图中是否存在环路,算法如下:

  1. 深度优先搜索(DFS) :通过深度优先搜索遍历图的所有节点,并标记节点状态,如果在搜索过程中发现某个节点已经被访问过且还未完成遍历,则存在环路。
  2. 广度优先搜索(BFS) :通过广度优先搜索遍历图的所有节点,并检测是否存在环路。
  3. 拓扑排序:拓扑排序是一种特殊的排序算法,它可以对有向无环图进行排序,如果图中存在环路,则无法进行拓扑排序。
  4. 并查集:并查集也可以用于检测图中是否存在环路,特别适用于无向图

BFS + 拓扑序列 + 逆转图

class Solution {int N = 100010, M = N * 2 + 10, idx = 0;int[] ne = new int[M], e = new int[M], h = new int[N], cnt = new int[N];public void add(int a, int b) {e[idx] = b;ne[idx] = h[a];h[a] = idx ++;}public List<Integer> eventualSafeNodes(int[][] graph) {// 首先想到的是拓扑序列,因为终端节点意味着没有出度,// 能所有边都到达终端节点的即为安全节点,所以可以想逆转图,即出度和入度转换Arrays.fill(h, -1);int n = graph.length;for(int i = 0;i < n;i ++) {for(int j : graph[i]) {add(j, i); // 转换出度入度cnt[i] ++;}}Deque<Integer> de = new ArrayDeque<>();  // 注意这个双向队列for(int i = 0;i < n;i ++) {if(cnt[i] == 0) {de.addFirst(i);}}while(!de.isEmpty()) {int t = de.pollLast();for(int i = h[t];i != -1;i = ne[i]) {int j = e[i];cnt[j] --;if(cnt[j] == 0) {de.addFirst(j);}}}ArrayList<Integer> ans = new ArrayList<>();for(int i = 0;i < n;i ++) {if(cnt[i] == 0) {ans.add(i);}}return ans;}
}

三色图

class Solution {// 三色标记法,0 --- 未被访问过, 1 --- 正在访问中, 2 --- 已经访问过public List<Integer> eventualSafeNodes(int[][] graph) {int n = graph.length; int[] color = new int[n];List<Integer> ans = new ArrayList<Integer>();for(int i = 0;i < n;i ++) {if(isSafe(graph, color, i)) {ans.add(i);}}return ans;}public boolean isSafe(int[][] graph, int[] color, int x) {if(color[x] != 0) {return color[x] == 2;}color[x] = 1;for(int y : graph[x]) {if(!isSafe(graph, color, y)) {return false;}}color[x] = 2;return true;}
}

这篇关于802 找到最终的安全状态的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/854483

相关文章

Java 线程安全与 volatile与单例模式问题及解决方案

《Java线程安全与volatile与单例模式问题及解决方案》文章主要讲解线程安全问题的五个成因(调度随机、变量修改、非原子操作、内存可见性、指令重排序)及解决方案,强调使用volatile关键字... 目录什么是线程安全线程安全问题的产生与解决方案线程的调度是随机的多个线程对同一个变量进行修改线程的修改操

python3如何找到字典的下标index、获取list中指定元素的位置索引

《python3如何找到字典的下标index、获取list中指定元素的位置索引》:本文主要介绍python3如何找到字典的下标index、获取list中指定元素的位置索引问题,具有很好的参考价值,... 目录enumerate()找到字典的下标 index获取list中指定元素的位置索引总结enumerat

Java中常见队列举例详解(非线程安全)

《Java中常见队列举例详解(非线程安全)》队列用于模拟队列这种数据结构,队列通常是指先进先出的容器,:本文主要介绍Java中常见队列(非线程安全)的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录一.队列定义 二.常见接口 三.常见实现类3.1 ArrayDeque3.1.1 实现原理3.1.2

IIS 7.0 及更高版本中的 FTP 状态代码

《IIS7.0及更高版本中的FTP状态代码》本文介绍IIS7.0中的FTP状态代码,方便大家在使用iis中发现ftp的问题... 简介尝试使用 FTP 访问运行 Internet Information Services (IIS) 7.0 或更高版本的服务器上的内容时,IIS 将返回指示响应状态的数字代

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

JAVA保证HashMap线程安全的几种方式

《JAVA保证HashMap线程安全的几种方式》HashMap是线程不安全的,这意味着如果多个线程并发地访问和修改同一个HashMap实例,可能会导致数据不一致和其他线程安全问题,本文主要介绍了JAV... 目录1. 使用 Collections.synchronizedMap2. 使用 Concurren

SpringSecurity JWT基于令牌的无状态认证实现

《SpringSecurityJWT基于令牌的无状态认证实现》SpringSecurity中实现基于JWT的无状态认证是一种常见的做法,本文就来介绍一下SpringSecurityJWT基于令牌的无... 目录引言一、JWT基本原理与结构二、Spring Security JWT依赖配置三、JWT令牌生成与

Python从零打造高安全密码管理器

《Python从零打造高安全密码管理器》在数字化时代,每人平均需要管理近百个账号密码,本文将带大家深入剖析一个基于Python的高安全性密码管理器实现方案,感兴趣的小伙伴可以参考一下... 目录一、前言:为什么我们需要专属密码管理器二、系统架构设计2.1 安全加密体系2.2 密码强度策略三、核心功能实现详解

关于WebSocket协议状态码解析

《关于WebSocket协议状态码解析》:本文主要介绍关于WebSocket协议状态码的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录WebSocket协议状态码解析1. 引言2. WebSocket协议状态码概述3. WebSocket协议状态码详解3

最新Spring Security实战教程之Spring Security安全框架指南

《最新SpringSecurity实战教程之SpringSecurity安全框架指南》SpringSecurity是Spring生态系统中的核心组件,提供认证、授权和防护机制,以保护应用免受各种安... 目录前言什么是Spring Security?同类框架对比Spring Security典型应用场景传统