linux1.2.13源码中,管理sock结构体的数据结构及操作函数

2024-03-27 21:48

本文主要是介绍linux1.2.13源码中,管理sock结构体的数据结构及操作函数,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

tcp和udp等协议在传输层都对应一个sock结构,该结构是实现协议的重要结构体,而传输层实现的就是对该结构体的管理。利用一个哈希链表根据端口号保存sock结构体。有了保存sock结构的数据结构后,还需要一系列的操作函数。代码如下。

/**	See if a socket number is in use.*/
// 看socket的端口是否在使用 
static int sk_inuse(struct proto *prot, int num)
{struct sock *sk;// 根据端口号取得哈希链表中的一个链表for(sk = prot->sock_array[num & (SOCK_ARRAY_SIZE -1 )];sk != NULL;  sk=sk->next) {if (sk->num == num) return(1);}return(0);
}/**	Pick a new socket number*/
// 随机获取一个端口
unsigned short get_new_socknum(struct proto *prot, unsigned short base)
{static int start=0;/** Used to cycle through the port numbers so the* chances of a confused connection drop.*/int i, j;int best = 0;int size = 32767; /* a big num. */struct sock *sk;// 大于1024if (base == 0) base = PROT_SOCK+1+(start % 1024);if (base <= PROT_SOCK) {base += PROT_SOCK+(start % 1024);}/* Now look through the entire array and try to find an empty ptr. */for(i=0; i < SOCK_ARRAY_SIZE; i++) {j = 0;// 找到一条链表sk = prot->sock_array[(i+base+1) &(SOCK_ARRAY_SIZE -1)];// 找到链表中的最后一个节点while(sk != NULL) {sk = sk->next;j++;}// 该链表上还没有节点,说明这个端口还没有被使用过,返回该端口号,更新start变量if (j == 0) {start =(i+1+start )%1024;return(i+base+1);}/*j为本次循环的队列的节点数,best记录新端口所属队列的索引,size为本次循环为止节点数最少的队列的节点数,为了避免单个队列过长,找可用端口的时候,不仅要找到一个可用的端口,而且尽量保证端口所对应的队列不会过长,避免查找的时候比较慢,所以for循环是为了找出哈希链表中节点数最少的队列对应的索引。然后往该队列插入一个新的端口节点*/if (j < size) {best = i;size = j;}}/* Now make sure the one we want is not in use. */// 在一条队列中找到一个未使用的端口号,SOCK_ARRAY_SIZE保证哈希后对应的是同一个队列while(sk_inuse(prot, base +best+1)) {best += SOCK_ARRAY_SIZE;}return(best+base+1);
}/**	Add a socket into the socket tables by number.*/void put_sock(unsigned short num, struct sock *sk)
{struct sock *sk1;struct sock *sk2;int mask;unsigned long flags;sk->num = num;sk->next = NULL;num = num &(SOCK_ARRAY_SIZE -1);/* We can't have an interrupt re-enter here. */save_flags(flags);cli();// 使用的socket数sk->prot->inuse += 1;// 最多使用的socket数if (sk->prot->highestinuse < sk->prot->inuse)sk->prot->highestinuse = sk->prot->inuse;// 链表为空,sk成为第一个节点if (sk->prot->sock_array[num] == NULL) {sk->prot->sock_array[num] = sk;restore_flags(flags);return;}restore_flags(flags);// mask为0xff000000 => 0xffff0000 => 0xffffff00 => 0xfffffffffor(mask = 0xff000000; mask != 0xffffffff; mask = (mask >> 8) | mask) {if ((mask & sk->saddr) &&(mask & sk->saddr) != (mask & 0xffffffff)) {mask = mask << 8;break;}}cli();// 根据端口找到对应的链表,找到对应的位置插入队列sk1 = sk->prot->sock_array[num];for(sk2 = sk1; sk2 != NULL; sk2=sk2->next) {if (!(sk2->saddr & mask)) {if (sk2 == sk1) {sk->next = sk->prot->sock_array[num];sk->prot->sock_array[num] = sk;sti();return;}sk->next = sk2;sk1->next= sk;sti();return;}sk1 = sk2;}/* Goes at the end. */sk->next = NULL;sk1->next = sk;sti();
}/**	Remove a socket from the socket tables.*/static void remove_sock(struct sock *sk1)
{struct sock *sk2;unsigned long flags;if (!sk1->prot) {printk("sock.c: remove_sock: sk1->prot == NULL\n");return;}/* We can't have this changing out from under us. */save_flags(flags);cli();sk2 = sk1->prot->sock_array[sk1->num &(SOCK_ARRAY_SIZE -1)];// 是队列的第一个节点if (sk2 == sk1) {sk1->prot->inuse -= 1;sk1->prot->sock_array[sk1->num &(SOCK_ARRAY_SIZE -1)] = sk1->next;restore_flags(flags);return;}// 找sk1while(sk2 && sk2->next != sk1) {sk2 = sk2->next;}// 找到if (sk2) {sk1->prot->inuse -= 1;sk2->next = sk1->next;restore_flags(flags);return;}restore_flags(flags);
}/**	Destroy an AF_INET socket*/void destroy_sock(struct sock *sk)
{struct sk_buff *skb;sk->inuse = 1;			/* just to be safe. *//* In case it's sleeping somewhere. */if (!sk->dead) sk->write_space(sk);remove_sock(sk);/* Now we can no longer get new packets. */delete_timer(sk);/* Nor send them */del_timer(&sk->retransmit_timer);while ((skb = tcp_dequeue_partial(sk)) != NULL) {IS_SKB(skb);kfree_skb(skb, FREE_WRITE);}/* Cleanup up the write buffer. */while((skb = skb_dequeue(&sk->write_queue)) != NULL) {IS_SKB(skb);kfree_skb(skb, FREE_WRITE);}/**	Don't discard received data until the user side kills its*	half of the socket.*/if (sk->dead) {while((skb=skb_dequeue(&sk->receive_queue))!=NULL) {/** This will take care of closing sockets that were* listening and didn't accept everything.*/// 处理listen型的socket,监听套接字接收队列里的skb关联的sock结构是一个新建的而不是skif (skb->sk != NULL && skb->sk != sk) {IS_SKB(skb);skb->sk->dead = 1;// 关闭连接skb->sk->prot->close(skb->sk, 0);}IS_SKB(skb);kfree_skb(skb, FREE_READ);}}	/* Now we need to clean up the send head. */cli();// 清空为了重传而缓存的数据包for(skb = sk->send_head; skb != NULL; ){struct sk_buff *skb2;/** We need to remove skb from the transmit queue,* or maybe the arp queue.*/if (skb->next  && skb->prev) {
/*			printk("destroy_sock: unlinked skb\n");*/IS_SKB(skb);skb_unlink(skb);}skb->dev = NULL;// unlink后link3指针仍然指向下一个skb节点skb2 = skb->link3;kfree_skb(skb, FREE_WRITE);skb = skb2;}sk->send_head = NULL;sti();/* And now the backlog. */// 还没来得及移到receive_queue队列的而缓存在back_log队列的skbwhile((skb=skb_dequeue(&sk->back_log))!=NULL) {/* this should never happen. */
/*		printk("cleaning back_log\n");*/kfree_skb(skb, FREE_READ);}/* Now if it has a half accepted/ closed socket. */if (sk->pair) {sk->pair->dead = 1;sk->pair->prot->close(sk->pair, 0);sk->pair = NULL;}/** Now if everything is gone we can free the socket* structure, otherwise we need to keep it around until* everything is gone.*/if (sk->dead && sk->rmem_alloc == 0 && sk->wmem_alloc == 0) {kfree_s((void *)sk,sizeof(*sk));} else {/* this should never happen. *//* actually it can if an ack has just been sent. */sk->destroy = 1;sk->ack_backlog = 0;sk->inuse = 0;reset_timer(sk, TIME_DESTROY, SOCK_DESTROY_TIME);}
}struct sock *get_sock(struct proto *prot, unsigned short num,unsigned long raddr,unsigned short rnum, unsigned long laddr)
{struct sock *s;struct sock *result = NULL;int badness = -1;unsigned short hnum;hnum = ntohs(num);/** SOCK_ARRAY_SIZE must be a power of two.  This will work better* than a prime unless 3 or more sockets end up using the same* array entry.  This should not be a problem because most* well known sockets don't overlap that much, and for* the other ones, we can just be careful about picking our* socket number when we choose an arbitrary one.*/for(s = prot->sock_array[hnum & (SOCK_ARRAY_SIZE - 1)];s != NULL; s = s->next) {int score = 0;if (s->num != hnum) continue;if(s->dead && (s->state == TCP_CLOSE))continue;/* local address matches? */if (s->saddr) {if (s->saddr != laddr)continue;score++;}/* remote address matches? */if (s->daddr) {if (s->daddr != raddr)continue;score++;}/* remote port matches? */if (s->dummy_th.dest) {if (s->dummy_th.dest != rnum)continue;score++;}/* perfect match? */// 全匹配,直接返回if (score == 3)return s;/* no, check if this is the best so far.. */if (score <= badness)continue;// 记录最好的匹配项result = s;badness = score;}return result;
}

协议每次新建一个socket的时候就会在底层生成一个sock结构体,然后插入大到哈希链表中,收到数据时候根据ip和端口从哈希链表中找到对应的sock结构体。

这篇关于linux1.2.13源码中,管理sock结构体的数据结构及操作函数的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/853488

相关文章

使用MongoDB进行数据存储的操作流程

《使用MongoDB进行数据存储的操作流程》在现代应用开发中,数据存储是一个至关重要的部分,随着数据量的增大和复杂性的增加,传统的关系型数据库有时难以应对高并发和大数据量的处理需求,MongoDB作为... 目录什么是MongoDB?MongoDB的优势使用MongoDB进行数据存储1. 安装MongoDB

Linux使用fdisk进行磁盘的相关操作

《Linux使用fdisk进行磁盘的相关操作》fdisk命令是Linux中用于管理磁盘分区的强大文本实用程序,这篇文章主要为大家详细介绍了如何使用fdisk进行磁盘的相关操作,需要的可以了解下... 目录简介基本语法示例用法列出所有分区查看指定磁盘的区分管理指定的磁盘进入交互式模式创建一个新的分区删除一个存

Golang操作DuckDB实战案例分享

《Golang操作DuckDB实战案例分享》DuckDB是一个嵌入式SQL数据库引擎,它与众所周知的SQLite非常相似,但它是为olap风格的工作负载设计的,DuckDB支持各种数据类型和SQL特性... 目录DuckDB的主要优点环境准备初始化表和数据查询单行或多行错误处理和事务完整代码最后总结Duck

C# 读写ini文件操作实现

《C#读写ini文件操作实现》本文主要介绍了C#读写ini文件操作实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录一、INI文件结构二、读取INI文件中的数据在C#应用程序中,常将INI文件作为配置文件,用于存储应用程序的

Python使用qrcode库实现生成二维码的操作指南

《Python使用qrcode库实现生成二维码的操作指南》二维码是一种广泛使用的二维条码,因其高效的数据存储能力和易于扫描的特点,广泛应用于支付、身份验证、营销推广等领域,Pythonqrcode库是... 目录一、安装 python qrcode 库二、基本使用方法1. 生成简单二维码2. 生成带 Log

Java操作ElasticSearch的实例详解

《Java操作ElasticSearch的实例详解》Elasticsearch是一个分布式的搜索和分析引擎,广泛用于全文搜索、日志分析等场景,本文将介绍如何在Java应用中使用Elastics... 目录简介环境准备1. 安装 Elasticsearch2. 添加依赖连接 Elasticsearch1. 创

高效管理你的Linux系统: Debian操作系统常用命令指南

《高效管理你的Linux系统:Debian操作系统常用命令指南》在Debian操作系统中,了解和掌握常用命令对于提高工作效率和系统管理至关重要,本文将详细介绍Debian的常用命令,帮助读者更好地使... Debian是一个流行的linux发行版,它以其稳定性、强大的软件包管理和丰富的社区资源而闻名。在使用

java Stream操作转换方法

《javaStream操作转换方法》文章总结了Java8中流(Stream)API的多种常用方法,包括创建流、过滤、遍历、分组、排序、去重、查找、匹配、转换、归约、打印日志、最大最小值、统计、连接、... 目录流创建1、list 转 map2、filter()过滤3、foreach遍历4、groupingB

Java操作PDF文件实现签订电子合同详细教程

《Java操作PDF文件实现签订电子合同详细教程》:本文主要介绍如何在PDF中加入电子签章与电子签名的过程,包括编写Word文件、生成PDF、为PDF格式做表单、为表单赋值、生成文档以及上传到OB... 目录前言:先看效果:1.编写word文件1.2然后生成PDF格式进行保存1.3我这里是将文件保存到本地后

Python使用Colorama库美化终端输出的操作示例

《Python使用Colorama库美化终端输出的操作示例》在开发命令行工具或调试程序时,我们可能会希望通过颜色来区分重要信息,比如警告、错误、提示等,而Colorama是一个简单易用的Python库... 目录python Colorama 库详解:终端输出美化的神器1. Colorama 是什么?2.