【python地图添加指北针和比例尺】

2024-03-27 21:28

本文主要是介绍【python地图添加指北针和比例尺】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 1、前言
  • 2、代码
    • 2.1、指北针
    • 2.2、比例尺
  • 3、结果

1、前言

  • 地理信息绘制中添加指北针和比例尺,使得图像更专业。

2、代码

2.1、指北针

def add_north(ax, labelsize=18, loc_x=0.95, loc_y=0.99, width=0.06, height=0.09, pad=0.14):"""画一个比例尺带'N'文字注释主要参数如下:param ax: 要画的坐标区域 Axes实例 plt.gca()获取即可:param labelsize: 显示'N'文字的大小:param loc_x: 以文字下部为中心的占整个ax横向比例:param loc_y: 以文字下部为中心的占整个ax纵向比例:param width: 指南针占ax比例宽度:param height: 指南针占ax比例高度:param pad: 文字符号占ax比例间隙:return: None"""minx, maxx = ax.get_xlim()miny, maxy = ax.get_ylim()ylen = maxy - minyxlen = maxx - minxleft = [minx + xlen*(loc_x - width*.5), miny + ylen*(loc_y - pad)]right = [minx + xlen*(loc_x + width*.5), miny + ylen*(loc_y - pad)]top = [minx + xlen*loc_x, miny + ylen*(loc_y - pad + height)]center = [minx + xlen*loc_x, left[1] + (top[1] - left[1])*.4]triangle = mpatches.Polygon([left, top, right, center], color='k')ax.text(s='N',x=minx + xlen*loc_x,y=miny + ylen*(loc_y - pad + height),fontsize=labelsize,horizontalalignment='center',verticalalignment='bottom')ax.add_patch(triangle)

2.2、比例尺

  • add_scalebar
#-----------函数:添加比例尺--------------
def add_scalebar(ax,lon0,lat0,length,size=0.45):'''ax: 坐标轴lon0: 经度lat0: 纬度length: 长度size: 控制粗细和距离的'''# style 3ax.hlines(y = lat0,  xmin = lon0, xmax = lon0+length/111, colors="black", ls="-", lw=1, label='%d km' % (length))ax.vlines(x = lon0, ymin = lat0-size, ymax = lat0+size, colors="black", ls="-", lw=1)ax.vlines(x = lon0+length/2/111, ymin = lat0-size, ymax = lat0+size, colors="black", ls="-", lw=1)ax.vlines(x = lon0+length/111, ymin = lat0-size, ymax = lat0+size, colors="black", ls="-", lw=1)ax.text(lon0+length/111,lat0+size+0.05,'%d' % (length),horizontalalignment = 'center')ax.text(lon0+length/2/111,lat0+size+0.05,'%d' % (length/2),horizontalalignment = 'center')ax.text(lon0,lat0+size+0.05,'0',horizontalalignment = 'center')ax.text(lon0+length/111/2*3,lat0+size+0.05,'km',horizontalalignment = 'center')# style 1# ax.hlines(y=lat0,  xmin = lon0, xmax = lon0+length/111, colors="black", ls="-", lw=2, label='%d km' % (length))# ax.vlines(x = lon0, ymin = lat0-size, ymax = lat0+size, colors="black", ls="-", lw=2)# ax.vlines(x = lon0+length/111, ymin = lat0-size, ymax = lat0+size, colors="black", ls="-", lw=2)# # ax.text(lon0+length/2/111,lat0+size,'500 km',horizontalalignment = 'center')# ax.text(lon0+length/2/111,lat0+size,'%d' % (length/2),horizontalalignment = 'center')# ax.text(lon0,lat0+size,'0',horizontalalignment = 'center')# ax.text(lon0+length/111/2*3,lat0+size,'km',horizontalalignment = 'center')# style 2# ax.hlines(y=lat0,  xmin = lon0, xmax = lon0+length/111, colors="black", ls="-", lw=1, label='%d km' % (length))# ax.vlines(x = lon0, ymin = lat0-size, ymax = lat0+size, colors="black", ls="-", lw=1)# ax.vlines(x = lon0+length/111, ymin = lat0-size, ymax = lat0+size, colors="black", ls="-", lw=1)# ax.text(lon0+length/111,lat0+size,'%d km' % (length),horizontalalignment = 'center')# ax.text(lon0,lat0+size,'0',horizontalalignment = 'center')
  • draw_the_scale
def draw_the_scale(ax, y,x,text,length = 1.5,lw = 5):#画比例尺函数# y代表比例尺所在纬度# x代表比例尺开始的经度# text代表比例尺最后刻度值# length代表比例尺的长度,单位为多少个经度# lw代表比例尺的宽度step = length/5#计算步长,画五格#画黑白线五条ax.hlines(y=y,xmin=x,xmax=x + step,colors="black", ls="-", lw=lw)ax.hlines(y=y,xmin=x + step,xmax=x + step*2,colors="white", ls="-", lw=lw)ax.hlines(y=y,xmin=x + step*2,xmax=x + step*3,colors="black", ls="-", lw=lw)ax.hlines(y=y,xmin=x + step*3,xmax=x + step*4,colors="white", ls="-", lw=lw)ax.hlines(y=y,xmin=x + step*4,xmax=x + step*5,colors="black", ls="-", lw=lw)#画长刻度两个ax.vlines(x = x, ymin = y - (lw/100) *3, ymax = y + lw/100, colors="black", ls="-", lw=1)ax.vlines(x = x + length, ymin = y - (lw/100) *3, ymax = y + lw/100, colors="black", ls="-", lw=1)#画段刻度四个ax.vlines(x = x + step, ymin = y - (lw/100) *2, ymax = y + lw/100, colors="black", ls="-", lw=1)ax.vlines(x = x + step*2, ymin = y - (lw/100) *2, ymax = y + lw/100, colors="black", ls="-", lw=1)ax.vlines(x = x + step*3, ymin = y - (lw/100) *2, ymax = y + lw/100, colors="black", ls="-", lw=1)ax.vlines(x = x + step*4, ymin = y - (lw/100) *2, ymax = y + lw/100, colors="black", ls="-", lw=1)#写字,0,500,kmax.text(x,y + (lw/100) *7,'0',horizontalalignment = 'center')ax.text(x + length,y + (lw/100) *7,text,horizontalalignment = 'center')ax.text(x + length/2,y + (lw/100)*2,'km',horizontalalignment = 'center')
  • draw_the_scale改
import matplotlib.patches as mpatches
def draw_the_scale(ax, y=0,x=0,length=500,lw=5):#画比例尺函数# y代表比例尺所在纬度# x代表比例尺开始的经度# text代表比例尺最后刻度值# length代表比例尺的长度,单位为多少个经度# lw代表比例尺的宽度step_ = length/111    #计算步长,画五格step = step_ * 100/111 /5#画黑白线五条ax.hlines(y=y,xmin=x,xmax=x + step,colors="black", ls="-", lw=lw)ax.hlines(y=y,xmin=x + step,xmax=x + step*2,colors="white", ls="-", lw=lw)ax.hlines(y=y,xmin=x + step*2,xmax=x + step*3,colors="black", ls="-", lw=lw)ax.hlines(y=y,xmin=x + step*3,xmax=x + step*4,colors="white", ls="-", lw=lw)ax.hlines(y=y,xmin=x + step*4,xmax=x + step*5,colors="black", ls="-", lw=lw)#画长刻度两个ax.vlines(x = x, ymin = y - (lw/100) *3, ymax = y + lw/100, colors="black", ls="-", lw=1)ax.vlines(x = x + step*5, ymin = y - (lw/100) *3, ymax = y + lw/100, colors="black", ls="-", lw=1)#画段刻度四个ax.vlines(x = x + step, ymin = y - (lw/100) *2, ymax = y + lw/100, colors="black", ls="-", lw=1)ax.vlines(x = x + step*2, ymin = y - (lw/100) *2, ymax = y + lw/100, colors="black", ls="-", lw=1)ax.vlines(x = x + step*3, ymin = y - (lw/100) *2, ymax = y + lw/100, colors="black", ls="-", lw=1)ax.vlines(x = x + step*4, ymin = y - (lw/100) *2, ymax = y + lw/100, colors="black", ls="-", lw=1)# #写字,0,500,kmax.text(x,y + 0.25,'0',horizontalalignment = 'center')ax.text(x + step_ -0.25,y + 0.25,str(length),horizontalalignment = 'center')ax.text(x + step_ + 0.25,y-0.25,'km',horizontalalignment = 'center')
  • draw_the_scale改2
def draw_the_scale(ax, y,x,length=500,num=5, lw=5):#画比例尺函数# y代表比例尺所在纬度# x代表比例尺开始的经度# text代表比例尺最后刻度值# length代表比例尺的长度,单位为多少个经度# num代表要划分的线段数# lw代表比例尺的宽度step_ = length/111           # 计算经度跨度step = step_ * 100/111 /num  # 100km为一格#画黑白线五条for i in range(num):if i%2 == 0:ax.hlines(y=y, xmin=x+i*step, xmax=x + (i+1)*step,colors="black", ls="-", lw=lw)else:ax.hlines(y=y,xmin=x + i*step,xmax=x + (i+1)*step,colors="white", ls="-", lw=lw)if i > 0:ax.vlines(x = x + (i+1)*step, ymin = y - (lw/100) *2, ymax = y + lw/100, colors="black", ls="-", lw=1)#画长刻度两个ax.vlines(x = x, ymin = y - (lw/100) *3, ymax = y + lw/100, colors="black", ls="-", lw=1)ax.vlines(x = x + step*num, ymin = y - (lw/100) *3, ymax = y + lw/100, colors="black", ls="-", lw=1)# #写字,0,500,kmax.text(x,y + 0.25,'0',horizontalalignment = 'center')ax.text(x + step_ -0.25,y + 0.25,str(length),horizontalalignment = 'center')ax.text(x + step_ + 0.25,y-0.25,'km',horizontalalignment = 'center')

3、结果

在这里插入图片描述
在这里插入图片描述

这篇关于【python地图添加指北针和比例尺】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/853438

相关文章

无人叉车3d激光slam多房间建图定位异常处理方案-墙体画线地图切分方案

墙体画线地图切分方案 针对问题:墙体两侧特征混淆误匹配,导致建图和定位偏差,表现为过门跳变、外月台走歪等 ·解决思路:预期的根治方案IGICP需要较长时间完成上线,先使用切分地图的工程化方案,即墙体两侧切分为不同地图,在某一侧只使用该侧地图进行定位 方案思路 切分原理:切分地图基于关键帧位置,而非点云。 理论基础:光照是直线的,一帧点云必定只能照射到墙的一侧,无法同时照到两侧实践考虑:关

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

nudepy,一个有趣的 Python 库!

更多资料获取 📚 个人网站:ipengtao.com 大家好,今天为大家分享一个有趣的 Python 库 - nudepy。 Github地址:https://github.com/hhatto/nude.py 在图像处理和计算机视觉应用中,检测图像中的不适当内容(例如裸露图像)是一个重要的任务。nudepy 是一个基于 Python 的库,专门用于检测图像中的不适当内容。该

pip-tools:打造可重复、可控的 Python 开发环境,解决依赖关系,让代码更稳定

在 Python 开发中,管理依赖关系是一项繁琐且容易出错的任务。手动更新依赖版本、处理冲突、确保一致性等等,都可能让开发者感到头疼。而 pip-tools 为开发者提供了一套稳定可靠的解决方案。 什么是 pip-tools? pip-tools 是一组命令行工具,旨在简化 Python 依赖关系的管理,确保项目环境的稳定性和可重复性。它主要包含两个核心工具:pip-compile 和 pip

HTML提交表单给python

python 代码 from flask import Flask, request, render_template, redirect, url_forapp = Flask(__name__)@app.route('/')def form():# 渲染表单页面return render_template('./index.html')@app.route('/submit_form',

Python QT实现A-star寻路算法

目录 1、界面使用方法 2、注意事项 3、补充说明 用Qt5搭建一个图形化测试寻路算法的测试环境。 1、界面使用方法 设定起点: 鼠标左键双击,设定红色的起点。左键双击设定起点,用红色标记。 设定终点: 鼠标右键双击,设定蓝色的终点。右键双击设定终点,用蓝色标记。 设置障碍点: 鼠标左键或者右键按着不放,拖动可以设置黑色的障碍点。按住左键或右键并拖动,设置一系列黑色障碍点

Python:豆瓣电影商业数据分析-爬取全数据【附带爬虫豆瓣,数据处理过程,数据分析,可视化,以及完整PPT报告】

**爬取豆瓣电影信息,分析近年电影行业的发展情况** 本文是完整的数据分析展现,代码有完整版,包含豆瓣电影爬取的具体方式【附带爬虫豆瓣,数据处理过程,数据分析,可视化,以及完整PPT报告】   最近MBA在学习《商业数据分析》,大实训作业给了数据要进行数据分析,所以先拿豆瓣电影练练手,网络上爬取豆瓣电影TOP250较多,但对于豆瓣电影全数据的爬取教程很少,所以我自己做一版。 目