离散 Hopfield 神经网络的分类与matlab实现

2024-03-27 19:20

本文主要是介绍离散 Hopfield 神经网络的分类与matlab实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1 案例背景

1.1离散 Hopfield 神经网络学习规则

        离散型 Hopfield神经网络的结构、工作方式,稳定性等问题在第9章中已经进行了详细的介绍,此处不再赘述。本节将详细介绍离散Hopfield神经网络权系数矩阵的设计方法。设计权系数矩阵的目的是:
        ①保证系统在异步工作时的稳定性,即它的权值是对称的;

        ②保证所有要求记忆的稳定平衡点都能收敛到自己;
        ③使伪稳定点的数目尽可能地少;
        ④使稳定点的吸引力尽可能地大。
        常用的设计方法有:外积法和正交化法。

1.2高校科研能力评价概述

        科研能力是高校的核心能力,其高低已成为衡量一所高校综合实力的重要指标。科研能力的高低不仅影响高校自身的发展,对高校所在地区的经济发展也有很大的影响。如何准确评价高校的科研能力已成为摆在政府、企业和高校面前的一个十分重要的问题。影响科研能力的因素众多,且互相交叉,互相渗透和互相影响,无法用确定的数学模型进行描述。目前,高校科研能力评价的方法很多,但普遍存在工作繁琐、时间滞后等缺点,且人为主观因素对评价结果有很大的影响。如何快速,准确地对众多高校的科研能力进行客观、公正地评价?这是一个目前亟待解决的问题。

1.3问题描述

        影响高校科研能力的因素很多,本书仅以较为重要的11个影响因素作为评价指标:科研队伍(X1)、科研基地(X2),科技学识及其相应的载体(图书情报资料)(X3)、科研经费(X4)、科研管理(X5),信息接收加工能力(X6)、学识积累与技术储备能力(X7)、科研技术创新能力(X8)、知识释放能力(X9)、自适应调节能力(X10)、科学决策能力(X11)。

        高校科研能力一般分为五个等级:很强(Ⅰ)、较强(Ⅱ)、一般(Ⅲ)、较差(Ⅳ)及很差(V)。某机构对20所高校的科研能力进行了调研和评价,试根据调研结果中较为重要的11个评价指标的数据,并结合离散Hopfield神经网络的联想记忆能力,建立离散 Hopfield高校科研能力评价模型。

2模型建立

2.1设计思路

        将若干个典型的分类等级所对应的评价指标设计为离散型 Hopfield神经网络的平衡点,Hopfield神经网络学习过程即为典型的分类等级的评价指标逐渐趋近于 Hopfield神经网络的平衡点的过程。学习完成后,Hopfield神经网络储存的平衡点即为各个分类等级所对应的评价指标。当有待分类的高校的评价指标输人时,Hopfield神经网络即利用其联想记忆的能力逐渐趋近于某个储存的平衡点,当状态不再改变时,此时平衡点所对应的便是待求的分类等级。

2.2设计步骤

        在设计思路的基础上,本案例的设计步骤主要包括如下5个步骤,如图10-1所示。

        1. 设计理想的等级评价指标
        本书所研究的 20 所高校的科研能力等 11 个评价指标之间的关系如表 10 -1所 列。

        将各个等级的样本对应的各评价指标的平均值作为各个等级的理想评价指标,即作为Hopfield神经网络的平衡点,如表10-2所列。

        2.理想的等级评价指标编码
        由于离散型Hopfield神经网络神经元的状态只有l和一l两种情况,所以将评价指标映射为神经元的状态时,需要将其进行编码。编码规则为:当大于或等于某个等级的指标值时,对应的神经元状态设为“1”,否则设为“一1”。理想的5个等级评价指标编码如图10-2所示.其中●表示神经元状态为“1”,即大于或等于对应等级的理想评价指标值,反之则用O表示。

        3.待分类的等级评价指标编码
        5所待分类的高校等级评价指标如表10-3所列,根据上述的编码规则得到对应的编码,如图10-3所示。

         4.创建网络
        设计好理想的5个等级评价指标及编码后,即可利用MATLAB自带的神经网络工具箱函数创建离散型 Hopfield神经网络。
        5.仿真、分析
        网络创建完毕后,将待分类的5所高校等级评价指标的编码作为Hopfield神经网络的输人,经过一定次数的学习,便可以得到仿真结果。将仿真结果与真实的等级进行比较,可以对该模型进行合理的评价。

3 MATLAB 实现

        利用MATLAB神经网络工具箱提供的函数,将设计步骤在MATLAB环境下实现。

%% 离散Hopfield的分类——高校科研能力评价%% 清空环境变量
clear all
clc%% 导入数据
load class.mat%% 目标向量
T = [class_1 class_2 class_3 class_4 class_5];%% 创建网络
net = newhop(T);%% 导入待分类样本
load sim.mat
A = {[sim_1 sim_2 sim_3 sim_4 sim_5]};%% 网络仿真
Y = sim(net,{25 20},{},A);%% 结果显示
Y1 = Y{20}(:,1:5)
Y2 = Y{20}(:,6:10)
Y3 = Y{20}(:,11:15)
Y4 = Y{20}(:,16:20)
Y5 = Y{20}(:,21:25)%% 绘图
result = {T;A{1};Y{20}};
figure
for p = 1:3for k = 1:5 subplot(3,5,(p-1)*5+k)temp = result{p}(:,(k-1)*5+1:k*5);[m,n] = size(temp);for i = 1:mfor j = 1:nif temp(i,j) > 0plot(j,m-i,'ko','MarkerFaceColor','k');elseplot(j,m-i,'ko');endhold onendendaxis([0 6 0 12])axis offif p == 1title(['class' num2str(k)])elseif p == 2title(['pre-sim' num2str(k)])elsetitle(['sim' num2str(k)])endend                
end% 案例扩展(无法分辨情况)
noisy = [1 -1 -1 -1 -1;-1 -1 -1 1 -1;-1 1 -1 -1 -1;-1 1 -1 -1 -1;1 -1 -1 -1 -1;-1 -1 1 -1 -1;-1 -1 -1 1 -1;-1 -1 -1 -1 1;-1 1 -1 -1 -1;-1 -1 -1 1 -1;-1 -1 1 -1 -1];
y = sim(net,{5 100},{},{noisy});
a = y{100}

        仿真结果如图10-4所示。其中,第一行与图10-2相对应,表示5个理想的等级评价指标编码;第二行与图10-3相对应,表示5所待分类的高校等级评价指标编码;第三行为设计的 Hopfield神经网络分类的结果。从图中可以清晰地看出,设计的Hopfield网络可以有效地进行分类,从而可以对高校的科研能力进行客观公正地评价。

4案例扩展

        值得注意的是,本书中所设计的离散型 Hopfield神经网络并非适用于任何场合。当某所高校的优势与劣势并存且相当明显(即一些影响因素得分很高,一些影响因素得分很低)时,Hopfield神经网络将得不到确切的分类。:

% 案例扩展(无法分辨情况)
noisy = [1 -1 -1 -1 -1;-1 -1 -1 1 -1;-1 1 -1 -1 -1;-1 1 -1 -1 -1;1 -1 -1 -1 -1;-1 -1 1 -1 -1;-1 -1 -1 1 -1;-1 -1 -1 -1 1;-1 1 -1 -1 -1;-1 -1 -1 1 -1;-1 -1 1 -1 -1];
y = sim(net,{5 100},{},{noisy});
a = y{100}

        如图10-5所示,从仿真结果中可以看出,其不属于五种典型等级类别即意味着所设计的Hopfield神经网络寻找不到与之最为接近的平衡点,因此无法将其正确分类。在这一点上,和专家打分法的结果是一致的。

5.完整代码

https://download.csdn.net/download/weixin_44209907/88162199

这篇关于离散 Hopfield 神经网络的分类与matlab实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/853123

相关文章

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各

OpenCV图像形态学的实现

《OpenCV图像形态学的实现》本文主要介绍了OpenCV图像形态学的实现,包括腐蚀、膨胀、开运算、闭运算、梯度运算、顶帽运算和黑帽运算,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起... 目录一、图像形态学简介二、腐蚀(Erosion)1. 原理2. OpenCV 实现三、膨胀China编程(

通过Spring层面进行事务回滚的实现

《通过Spring层面进行事务回滚的实现》本文主要介绍了通过Spring层面进行事务回滚的实现,包括声明式事务和编程式事务,具有一定的参考价值,感兴趣的可以了解一下... 目录声明式事务回滚:1. 基础注解配置2. 指定回滚异常类型3. ​不回滚特殊场景编程式事务回滚:1. ​使用 TransactionT

Android实现打开本地pdf文件的两种方式

《Android实现打开本地pdf文件的两种方式》在现代应用中,PDF格式因其跨平台、稳定性好、展示内容一致等特点,在Android平台上,如何高效地打开本地PDF文件,不仅关系到用户体验,也直接影响... 目录一、项目概述二、相关知识2.1 PDF文件基本概述2.2 android 文件访问与存储权限2.

使用Python实现全能手机虚拟键盘的示例代码

《使用Python实现全能手机虚拟键盘的示例代码》在数字化办公时代,你是否遇到过这样的场景:会议室投影电脑突然键盘失灵、躺在沙发上想远程控制书房电脑、或者需要给长辈远程协助操作?今天我要分享的Pyth... 目录一、项目概述:不止于键盘的远程控制方案1.1 创新价值1.2 技术栈全景二、需求实现步骤一、需求

Spring Shell 命令行实现交互式Shell应用开发

《SpringShell命令行实现交互式Shell应用开发》本文主要介绍了SpringShell命令行实现交互式Shell应用开发,能够帮助开发者快速构建功能丰富的命令行应用程序,具有一定的参考价... 目录引言一、Spring Shell概述二、创建命令类三、命令参数处理四、命令分组与帮助系统五、自定义S

SpringBatch数据写入实现

《SpringBatch数据写入实现》SpringBatch通过ItemWriter接口及其丰富的实现,提供了强大的数据写入能力,本文主要介绍了SpringBatch数据写入实现,具有一定的参考价值,... 目录python引言一、ItemWriter核心概念二、数据库写入实现三、文件写入实现四、多目标写入

Android Studio 配置国内镜像源的实现步骤

《AndroidStudio配置国内镜像源的实现步骤》本文主要介绍了AndroidStudio配置国内镜像源的实现步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,... 目录一、修改 hosts,解决 SDK 下载失败的问题二、修改 gradle 地址,解决 gradle

SpringSecurity JWT基于令牌的无状态认证实现

《SpringSecurityJWT基于令牌的无状态认证实现》SpringSecurity中实现基于JWT的无状态认证是一种常见的做法,本文就来介绍一下SpringSecurityJWT基于令牌的无... 目录引言一、JWT基本原理与结构二、Spring Security JWT依赖配置三、JWT令牌生成与

SpringBoot实现微信小程序支付功能

《SpringBoot实现微信小程序支付功能》小程序支付功能已成为众多应用的核心需求之一,本文主要介绍了SpringBoot实现微信小程序支付功能,文中通过示例代码介绍的非常详细,对大家的学习或者工作... 目录一、引言二、准备工作(一)微信支付商户平台配置(二)Spring Boot项目搭建(三)配置文件