使用启智OpenI平台体验Open-Sora笔记

2024-03-27 18:44

本文主要是介绍使用启智OpenI平台体验Open-Sora笔记,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

OpenI准备部分

镜像代码仓

在这里插入图片描述
在这里插入图片描述

创建云脑任务

在这里插入图片描述

新建调试任务

在这里插入图片描述
镜像选择
如果不想体验整个安装配置过程的话,我准备了一个Open-Sora的环境镜像应该可以直接开箱即用
地址:

192.168.204.22:5000/default-workspace/99280a9940ae44ca8f5892134386fddb/image:OpenSoraV2

如果想自己体验整个环境配置准备阶段的可以使用这个镜像地址镜像地址:

192.168.204.22:5000/default-workspace/99280a9940ae44ca8f5892134386fddb/image:ubuntu22.04-cuda12.1.0-py310-torch2.1.2-tf2.14

模型选择:搜索打勾的两个选中添加
在这里插入图片描述
参数设置部分基本如下图所示
在这里插入图片描述

点击新建任务完成创建调试任务的工作

环境准备

如果使用我制造好的Open-Sora镜像的话直接跳转到克隆代码仓那一步

安装flash attention

pip install packaging ninja
pip install flash-attn --no-build-isolation

安装apex

cd /tmp/code
git clone https://github.com/NVIDIA/apex
cd apex
pip install -v --disable-pip-version-check --no-cache-dir --no-build-isolation --config-settings "--build-option=--cpp_ext" --config-settings "--build-option=--cuda_ext" ./

安装xformers

pip install -U xformers --index-url https://download.pytorch.org/whl/cu121

克隆代码仓及安装

cd /temp/code
git clone https://github.com/hpcaitech/Open-Sora #这边可以替换成克隆后在openi的代码仓地址
cd Open-Sora
pip install -v .  #如果使用Open-Sora的话这一步不要执行

注:如果使用我制作号的Open-Sora镜像的话这一步不要执行pip install! Git Clone完成就好!

如果不使用我公开的模型文件,想自己体验下载模型的话,可以使用下面的文件脚本(download_model.py)放到Open-Sora代码仓文件夹的上一层执行
安装依赖

pip install modelscope

下载脚本

import torch
from modelscope import snapshot_download, AutoModel, AutoTokenizer
import os
snapshot_download('AI-ModelScope/sd-vae-ft-ema', cache_dir='./Open-Sora/opensora/models/', revision='master')
snapshot_download('AI-ModelScope/Open-Sora', cache_dir='./Open-Sora/opensora/models/', revision='master')

重新安装torch==2.2.1

如果使用我配置的Open-Sora镜像的话这一步不要执行

不重新安装在openi平台有概率会被重新安装成torch==2.1.1,这样就造成了版本不匹配

pip uninstlal torch torchvision torchaudio
pip3 install torch==2.2.1 torchvision torchaudio==2.2.1 --index-url https://download.pytorch.org/whl/cu121

修改文件(Open-Sora/configs/opensora/inference/16x256x256.py)

num_frames = 16
fps = 24 // 3
image_size = (256, 256)# Define model
model = dict(type="STDiT-XL/2",space_scale=0.5,time_scale=1.0,enable_flashattn=True,enable_layernorm_kernel=True,from_pretrained="/tmp/code/Open-Sora/opensora/models/Open-Sora/OpenSora-v1-HQ-16x256x256.pth",
)
vae = dict(type="VideoAutoencoderKL",from_pretrained="/tmp/code/Open-Sora/opensora/models/sd-vae-ft-ema",
)
text_encoder = dict(type="t5",from_pretrained="DeepFloyd/t5-v1_1-xxl",model_max_length=120,
)
scheduler = dict(type="iddpm",num_sampling_steps=100,cfg_scale=7.0,
)
dtype = "fp16"# Others
batch_size = 2
seed = 42
prompt_path = "./assets/texts/t2v_samples.txt"
save_dir = "./outputs/samples/"

设置HF镜像

export HF_ENDPOINT=https://hf-mirror.com

拷贝模型

cd opensora/models/
cp -r /tmp/pretrainmodel/* ./

运行代码

cd ../..
torchrun --standalone --nproc_per_node 1 scripts/inference.py configs/opensora/inference/16x256x256.py

运行时GPU情况:

Mon Mar 25 18:07:00 2024
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 515.65.01    Driver Version: 515.65.01    CUDA Version: 12.1     |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|                               |                      |               MIG M. |
|===============================+======================+======================|
|   0  NVIDIA A100-PCI...  Off  | 00000000:92:00.0 Off |                    0 |
| N/A   48C    P0   210W / 250W |  22662MiB / 40960MiB |    100%      Default |
|                               |                      |             Disabled |
+-------------------------------+----------------------+----------------------++-----------------------------------------------------------------------------+
| Processes:                                                                  |
|  GPU   GI   CI        PID   Type   Process name                  GPU Memory |
|        ID   ID                                                   Usage      |
|=============================================================================|
+-----------------------------------------------------------------------------+

这篇关于使用启智OpenI平台体验Open-Sora笔记的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/853035

相关文章

使用Python实现一键隐藏屏幕并锁定输入

《使用Python实现一键隐藏屏幕并锁定输入》本文主要介绍了使用Python编写一个一键隐藏屏幕并锁定输入的黑科技程序,能够在指定热键触发后立即遮挡屏幕,并禁止一切键盘鼠标输入,这样就再也不用担心自己... 目录1. 概述2. 功能亮点3.代码实现4.使用方法5. 展示效果6. 代码优化与拓展7. 总结1.

使用Python开发一个简单的本地图片服务器

《使用Python开发一个简单的本地图片服务器》本文介绍了如何结合wxPython构建的图形用户界面GUI和Python内建的Web服务器功能,在本地网络中搭建一个私人的,即开即用的网页相册,文中的示... 目录项目目标核心技术栈代码深度解析完整代码工作流程主要功能与优势潜在改进与思考运行结果总结你是否曾经

Linux中的计划任务(crontab)使用方式

《Linux中的计划任务(crontab)使用方式》:本文主要介绍Linux中的计划任务(crontab)使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、前言1、linux的起源与发展2、什么是计划任务(crontab)二、crontab基础1、cro

kotlin中const 和val的区别及使用场景分析

《kotlin中const和val的区别及使用场景分析》在Kotlin中,const和val都是用来声明常量的,但它们的使用场景和功能有所不同,下面给大家介绍kotlin中const和val的区别,... 目录kotlin中const 和val的区别1. val:2. const:二 代码示例1 Java

C++变换迭代器使用方法小结

《C++变换迭代器使用方法小结》本文主要介绍了C++变换迭代器使用方法小结,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录1、源码2、代码解析代码解析:transform_iterator1. transform_iterat

C++中std::distance使用方法示例

《C++中std::distance使用方法示例》std::distance是C++标准库中的一个函数,用于计算两个迭代器之间的距离,本文主要介绍了C++中std::distance使用方法示例,具... 目录语法使用方式解释示例输出:其他说明:总结std::distance&n编程bsp;是 C++ 标准

vue使用docxtemplater导出word

《vue使用docxtemplater导出word》docxtemplater是一种邮件合并工具,以编程方式使用并处理条件、循环,并且可以扩展以插入任何内容,下面我们来看看如何使用docxtempl... 目录docxtemplatervue使用docxtemplater导出word安装常用语法 封装导出方

Linux换行符的使用方法详解

《Linux换行符的使用方法详解》本文介绍了Linux中常用的换行符LF及其在文件中的表示,展示了如何使用sed命令替换换行符,并列举了与换行符处理相关的Linux命令,通过代码讲解的非常详细,需要的... 目录简介检测文件中的换行符使用 cat -A 查看换行符使用 od -c 检查字符换行符格式转换将

使用Jackson进行JSON生成与解析的新手指南

《使用Jackson进行JSON生成与解析的新手指南》这篇文章主要为大家详细介绍了如何使用Jackson进行JSON生成与解析处理,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 核心依赖2. 基础用法2.1 对象转 jsON(序列化)2.2 JSON 转对象(反序列化)3.

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.