LeetCode146:LRU缓存

2024-03-27 07:28
文章标签 缓存 lru leetcode146

本文主要是介绍LeetCode146:LRU缓存,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

leetCode:146. LRU 缓存

题目描述

请你设计并实现一个满足 LRU (最近最少使用) 缓存 约束的数据结构。
实现 LRUCache 类:
LRUCache(int capacity) 以 正整数 作为容量 capacity 初始化 LRU 缓存
int get(int key) 如果关键字 key 存在于缓存中,则返回关键字的值,否则返回 -1 。
void put(int key, int value) 如果关键字 key 已经存在,则变更其数据值 value ;如果不存在,则向缓存中插入该组 key-value 。如果插入操作导致关键字数量超过 capacity ,则应该 逐出 最久未使用的关键字。
函数 get 和 put 必须以 O(1) 的平均时间复杂度运行。示例:输入
["LRUCache", "put", "put", "get", "put", "get", "put", "get", "get", "get"]
[[2], [1, 1], [2, 2], [1], [3, 3], [2], [4, 4], [1], [3], [4]]
输出
[null, null, null, 1, null, -1, null, -1, 3, 4]解释
LRUCache lRUCache = new LRUCache(2);
lRUCache.put(1, 1); // 缓存是 {1=1}
lRUCache.put(2, 2); // 缓存是 {1=1, 2=2}
lRUCache.get(1);    // 返回 1
lRUCache.put(3, 3); // 该操作会使得关键字 2 作废,缓存是 {1=1, 3=3}
lRUCache.get(2);    // 返回 -1 (未找到)
lRUCache.put(4, 4); // 该操作会使得关键字 1 作废,缓存是 {4=4, 3=3}
lRUCache.get(1);    // 返回 -1 (未找到)
lRUCache.get(3);    // 返回 3
lRUCache.get(4);    // 返回 4
提示:1 <= capacity <= 3000
0 <= key <= 10000
0 <= value <= 105
最多调用 2 * 105 次 get 和 put

题目解读

LRU 缓存淘汰算法就是一种常用策略。LRU 的全称是 Least Recently Used,也就是说我们认为最近使用过的数据应该是是「有用的」,很久都没用过的数据应该是无用的,内存满了就优先删那些很久没用过的数据。

题目实现

只使用HashMap实现

算法设计

要让 put 和 get 方法的时间复杂度为 O(1),我们可以总结出 cache 这个数据结构必要的条件:

1、显然 cache 中的元素必须有时序,以区分最近使用的和久未使用的数据,当容量满了之后要删除最久未使用的那个元素腾位置。

2、我们要在 cache 中快速找某个 key 是否已存在并得到对应的 val;

3、每次访问 cache 中的某个 key,需要将这个元素变为最近使用的,也就是说 cache 要支持在任意位置快速插入和删除元素。

那么,什么数据结构同时符合上述条件呢?哈希表查找快,但是数据无固定顺序;链表有顺序之分,插入删除快,但是查找慢。所以结合一下,形成一种新的数据结构:哈希链表 LinkedHashMap。

LRU 缓存算法的核心数据结构就是哈希链表,双向链表和哈希表的结合体。这个数据结构长这样:
在这里插入图片描述
如果我们每次默认从链表尾部添加元素,那么显然越靠尾部的元素就是最近使用的,越靠头部的元素就是最久未使用的。

2、对于某一个 key,我们可以通过哈希表快速定位到链表中的节点,从而取得对应 val。

3、链表显然是支持在任意位置快速插入和删除的,改改指针就行。只不过传统的链表无法按照索引快速访问某一个位置的元素,而这里借助哈希表,可以通过 key 快速映射到任意一个链表节点,然后进行插入和删除。

代码实现

import java.util.*;// LRUCache 类实现了一个基于 LRU 策略的缓存
public class LRUCache {// 缓存的最大容量private final int capacity;// 使用 HashMap 存储键值对,便于快速查找private final Map<Integer, Node> cacheMap;// 使用 LinkedList 作为双向链表,维护元素的访问顺序private final LinkedList<Node> lruList;// 构造函数,初始化缓存容量public LRUCache(int capacity) {this.capacity = capacity;this.cacheMap = new HashMap<>(capacity);this.lruList = new LinkedList<>();}// 根据键获取值,如果存在则更新访问顺序public int get(int key) {if (cacheMap.containsKey(key)) { // 如果键存在moveToHead(cacheMap.get(key)); // 移动节点到链表头部return cacheMap.get(key).val; // 返回值}return -1; // 键不存在,返回 -1}// 插入或更新键值对,如果超过容量则淘汰最不常用的项public void put(int key, int value) {if (cacheMap.containsKey(key)) { // 如果键已存在moveToHead(cacheMap.get(key)); // 移动节点到链表头部cacheMap.get(key).val = value; // 更新值} else { // 键不存在if (cacheMap.size() >= capacity) { // 如果缓存已满evict(); // 淘汰最不常用的项}Node newNode = new Node(key, value); // 创建新节点cacheMap.put(key, newNode); // 添加到缓存映射lruList.addFirst(newNode); // 添加到链表头部}}// 将指定节点移到链表头部private void moveToHead(Node node) {lruList.remove(node); // 从链表中移除节点lruList.addFirst(node); // 将节点添加到链表头部}// 淘汰最不常用的项private void evict() {Node nodeToRemove = lruList.pollLast(); // 获取链表尾部的节点cacheMap.remove(nodeToRemove.key); // 从缓存映射中移除节点}// 内部类 Node 表示链表中的一个节点,包含键、值以及指向前后节点的引用static class Node {int key;int val;Node next;Node prev;public Node(int key, int val) {this.key = key;this.val = val;}}
}

在这里插入图片描述

使用LinkedHashMap实现

算法设计

LinkedHashMap内部已经使用了LinkedList

代码实现

import java.util.LinkedHashMap;//leetcode submit region begin(Prohibit modification and deletion)
class LRUCache {LinkedHashMap<Integer, Integer> cache = new LinkedHashMap<>();int capacity;public LRUCache(int capacity) {this.capacity = capacity;}public int get(int key) {//不包含if (!cache.containsKey(key)) {return -1;}// 将 key 变为最近使用makeRecently(key);return cache.get(key);}public void put(int key, int value) {if (cache.containsKey(key)) {makeRecently(key);} else {if (cache.size() >= capacity) {//删除头结点cache.remove(cache.keySet().iterator().next());}}cache.put(key, value);}/*** 将 key 移动到队尾** @param key*/private void makeRecently(int key) {int val = cache.get(key);// 删除 key,重新插入到队尾cache.remove(key);cache.put(key, val);}}

在这里插入图片描述

继承LinkedHashMap实现(最简洁)

算法设计

LinkedHashMap.afterNodeInsertion()

void afterNodeInsertion(boolean evict) { // possibly remove eldestLinkedHashMap.Entry<K,V> first;if (evict && (first = head) != null && removeEldestEntry(first)) {K key = first.key;removeNode(hash(key), key, null, false, true);}
}

afterNodeInsertion() 可能会删除老元素,但需要满足3个条件:

evict 为 true;
(first = head) != null,双向链表的头结点不能为 null,换句话说,双向链表中必须有老元素(没有老元素还删个锤锤);
removeEldestEntry(first) 方法返回为 true。

其中removeEldestEntry方法是『移除最老的元素』,默认为false,即不删除
因此,我们需要复写removeEldestEntry方法即可

代码实现

class LRUCache extends LinkedHashMap<Integer, Integer> {int capacity=0;public LRUCache(int capacity) {super(capacity, 0.75F, true);this.capacity=capacity;}public int get(int key) {return (int) super.getOrDefault(key, -1);}public void put(int key, int value) {super.put(key, value);}/*** 判断元素个数是否超过缓存容量*/protected boolean removeEldestEntry(Map.Entry<Integer, Integer> eldest) {return size() > capacity;}
}

其他

算法用途

手机管家-后台程序管理

相关

现在你应该理解 LRU(Least Recently Used)策略了。当然还有其他缓存淘汰策略,比如不要按访问的时序来淘汰,而是按访问频率(LFU 策略)来淘汰等等,各有应用场景
详见: LeetCode 160 LFU

这篇关于LeetCode146:LRU缓存的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/851342

相关文章

Redis与缓存解读

《Redis与缓存解读》文章介绍了Redis作为缓存层的优势和缺点,并分析了六种缓存更新策略,包括超时剔除、先删缓存再更新数据库、旁路缓存、先更新数据库再删缓存、先更新数据库再更新缓存、读写穿透和异步... 目录缓存缓存优缺点缓存更新策略超时剔除先删缓存再更新数据库旁路缓存(先更新数据库,再删缓存)先更新数

el-select下拉选择缓存的实现

《el-select下拉选择缓存的实现》本文主要介绍了在使用el-select实现下拉选择缓存时遇到的问题及解决方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录项目场景:问题描述解决方案:项目场景:从左侧列表中选取字段填入右侧下拉多选框,用户可以对右侧

SpringBoot使用注解集成Redis缓存的示例代码

《SpringBoot使用注解集成Redis缓存的示例代码》:本文主要介绍在SpringBoot中使用注解集成Redis缓存的步骤,包括添加依赖、创建相关配置类、需要缓存数据的类(Tes... 目录一、创建 Caching 配置类二、创建需要缓存数据的类三、测试方法Spring Boot 熟悉后,集成一个外

使用Spring Cache时设置缓存键的注意事项详解

《使用SpringCache时设置缓存键的注意事项详解》在现代的Web应用中,缓存是提高系统性能和响应速度的重要手段之一,Spring框架提供了强大的缓存支持,通过​​@Cacheable​​、​​... 目录引言1. 缓存键的基本概念2. 默认缓存键生成器3. 自定义缓存键3.1 使用​​@Cacheab

Nacos客户端本地缓存和故障转移方式

《Nacos客户端本地缓存和故障转移方式》Nacos客户端在从Server获得服务时,若出现故障,会通过ServiceInfoHolder和FailoverReactor进行故障转移,ServiceI... 目录1. ServiceInfoHolder本地缓存目录2. FailoverReactorinit

缓存雪崩问题

缓存雪崩是缓存中大量key失效后当高并发到来时导致大量请求到数据库,瞬间耗尽数据库资源,导致数据库无法使用。 解决方案: 1、使用锁进行控制 2、对同一类型信息的key设置不同的过期时间 3、缓存预热 1. 什么是缓存雪崩 缓存雪崩是指在短时间内,大量缓存数据同时失效,导致所有请求直接涌向数据库,瞬间增加数据库的负载压力,可能导致数据库性能下降甚至崩溃。这种情况往往发生在缓存中大量 k

Redis中使用布隆过滤器解决缓存穿透问题

一、缓存穿透(失效)问题 缓存穿透是指查询一个一定不存在的数据,由于缓存中没有命中,会去数据库中查询,而数据库中也没有该数据,并且每次查询都不会命中缓存,从而每次请求都直接打到了数据库上,这会给数据库带来巨大压力。 二、布隆过滤器原理 布隆过滤器(Bloom Filter)是一种空间效率很高的随机数据结构,它利用多个不同的哈希函数将一个元素映射到一个位数组中的多个位置,并将这些位置的值置

防止缓存击穿、缓存穿透和缓存雪崩

使用Redis缓存防止缓存击穿、缓存穿透和缓存雪崩 在高并发系统中,缓存击穿、缓存穿透和缓存雪崩是三种常见的缓存问题。本文将介绍如何使用Redis、分布式锁和布隆过滤器有效解决这些问题,并且会通过Java代码详细说明实现的思路和原因。 1. 背景 缓存穿透:指的是大量请求缓存中不存在且数据库中也不存在的数据,导致大量请求直接打到数据库上,形成数据库压力。 缓存击穿:指的是某个热点数据在

PHP APC缓存函数使用教程

APC,全称是Alternative PHP Cache,官方翻译叫”可选PHP缓存”。它为我们提供了缓存和优化PHP的中间代码的框架。 APC的缓存分两部分:系统缓存和用户数据缓存。(Linux APC扩展安装) 系统缓存 它是指APC把PHP文件源码的编译结果缓存起来,然后在每次调用时先对比时间标记。如果未过期,则使用缓存的中间代码运行。默认缓存 3600s(一小时)。但是这样仍会浪费大量C

缓存策略使用总结

缓存是提高系统性能的最简单方法之一。相对而言,数据库(or NoSQL数据库)的速度比较慢,而速度却又是致胜的关键。 如果使用得当,缓存可以减少相应时间、减少数据库负载以及节省成本。本文罗列了几种缓存策略,选择正确的一种会有很大的不同。缓存策略取决于数据和数据访问模式。换句话说,数据是如何写和读的。例如: 系统是写多读少的吗?(例如基于时间的日志)数据是否是只写入一次并被读取多次?(例如用户配