【数据结构】双向奔赴的爱恋 --- 双向链表

2024-03-26 23:36

本文主要是介绍【数据结构】双向奔赴的爱恋 --- 双向链表,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述
关注小庄 顿顿解馋๑ᵒᯅᵒ๑

引言:上回我们讲解了单链表(单向不循环不带头链表),我们可以发现他是存在一定缺陷的,比如尾删的时候需要遍历一遍链表,这会大大降低我们的性能,再比如对于链表中的一个结点我们是无法直接访问它的上一个结点,那有什么解决方法呢?这里就得请出我们今天的主角----双链表。

文章目录

  • 一. 🏠 什么是双链表
  • 二. 🏠 双链表的实现
    • 👿 双链表结点
    • 👿 双链表哨兵位的创建
    • 👿 双链表插入数据
    • 👿 双链表删除数据
    • 👿 双链表查找
    • 👿 pos结点前插入数据和删除pos结点数据
    • 👿 双链表打印和销毁
  • 三. 🏠 双链表的分析

一. 🏠 什么是双链表

在这里我们讲的双链表有三个特点 :双向 , 循环 , 带头 。我们分别理解这三个特点~

  • 双向 循环
    在这里插入图片描述
    优势:1.每一个结点都能很方便访问它的后一个结点和前一个结点 2.方便找到尾节点,提高了效率。

  • 带头
    在这里插入图片描述
    图中的head就是哨兵位

  1. 这里的带头跟我们之前所说的头节点有所不同,这里的带头,不存储有效数据起到一个哨兵的作用。
  2. 哨兵位的作用:遍历循环链表避免死循环,其次涉及到头节点的删除和插入时,无需考虑NULL的问题。

双链表的这三个特点将会使得实现它比实现单链表更简单~


二. 🏠 双链表的实现

👿 双链表结点

为了能循环和双向,我们双链表的一个结点需要两个指针。

typedef int Datatype;
typedef struct ListNode
{struct ListNode* next;struct ListNode* pre;Datatype x;
}ListNode;

👿 双链表哨兵位的创建

ListNode* newnode = (ListNode*)malloc(sizeof(ListNode));if (NULL == newnode){perror("malloc failed");return;}newnode->x = x;newnode->next = newnode;newnode->pre = newnode;

1.注意next指针和pre指针都要指向自己。
2.由于插入数据也要创建新结点,所以我们可以直接创建一个申请结点的接口方便复用。

//申请新结点的接口
ListNode* BuyNode(Datatype x)
{ListNode* newnode = (ListNode*)malloc(sizeof(ListNode));if (NULL == newnode){perror("malloc failed");return;}newnode->x = x;newnode->next = newnode;newnode->pre = newnode;return newnode;
}
// 创建返回链表的头结点.
ListNode* ListCreate()
{ListNode* phead = BuyNode(-1); //哨兵位return phead;
}

👿 双链表插入数据

  • 尾插
    双链表的尾插指的是将新节点插入到哨兵位之前
    在这里插入图片描述

1.黄色箭头和蓝色箭头是我们要修改的指针指向
2.注意:要先改变蓝色箭头的对应关系,如果先让head的pre变成newnode话,后边newnode->pre = plist就会指向自己
3.小技巧:不管三七二十一,插入直接先改newnode的next和pre

// 双向链表尾插  尾插是插到plist的前面
void ListPushBack(ListNode* plist, Datatype x)
{assert(plist);ListNode* newnode = BuyNode(x);newnode->next = plist;newnode->pre = plist->pre;plist->pre->next = newnode;plist->pre = newnode;
}
  • 头插
    在这里插入图片描述
// 双向链表头插 头插是插到哨兵位的后面
void ListPushFront(ListNode* plist, Datatype x)
{ListNode* newnode = BuyNode(x);ListNode* del = plist->next;newnode->next = del;newnode->pre = plist;del->pre = newnode;plist->next = newnode;
}

*是不是很easy,跟单链表比起来 ~ *

👿 双链表删除数据

  • 尾删
    在这里插入图片描述
    对于尾删 只需要改它前面一个结点next和哨兵位的pre就好了,存好pre结点的位置
void ListPopBack(ListNode* plist)
{assert(plist);assert(plist->next != plist);ListNode* ptail = plist->pre;ListNode* pre = ptail->pre;pre->next = plist;plist->pre = pre;free(ptail);ptail = NULL;
}
  • 头删

在这里插入图片描述

// 双向链表头删
void ListPopFront(ListNode* plist)
{assert(plist);assert(plist->next != plist);ListNode* pNext = plist->next->next;ListNode* pcur = plist->next;plist->next = pNext;pNext->pre = plist;free(pcur);pcur = NULL;
}

👿 双链表查找

遍历链表找到就停下,如果没找到循环到head停止,返回NULL。大大提现了哨兵位的好处

// 双向链表查找
ListNode* ListFind(ListNode* plist, Datatype x)
{assert(plist);ListNode* pcur = plist->next;while (pcur != plist){if (pcur->x == x){return pcur;}pcur = pcur->next;}return NULL;
}

👿 pos结点前插入数据和删除pos结点数据

类似尾插尾删,头插头删,改变指针指向即可

// 双向链表在pos的前面进行插入
void ListInsert(ListNode* pos, Datatype x)
{assert(pos);ListNode* newnode = BuyNode(x);ListNode* pre = pos->pre;newnode->next = pos;newnode->pre = pre;pre->next = newnode;pos->pre = newnode;
}
// 双向链表删除pos位置的结点
void ListErase(ListNode* pos)
{assert(pos);ListNode* pre = pos->pre;ListNode* pNext = pos->next;pre->next = pNext;pNext->pre = pre;free(pos);pos = NULL;
}

👿 双链表打印和销毁

循环遍历到phead停止~

// 双向链表打印
void ListPrint(ListNode* plist)
{assert(plist);ListNode* pcur = plist->next;while (pcur != plist){printf("%d->", pcur->x);pcur = pcur->next;}printf("\n");
}
// 双向链表销毁
void ListDestory(ListNode* plist)
{ListNode* pcur = plist->next;while (pcur != plist){ListNode* del = pcur->next;free(pcur);pcur = del;}free(pcur);pcur = NULL; //无效
}

注意:由于函数形参是实参的一份临时拷贝,所以要在函数外手动置空!


三. 🏠 双链表的分析

经过如上我们实现的双链表结构,我们不禁发现它比单链表功能的强大,那它是否是完美的呢?答案是否的,没有完美的人,也没有完美的数据结构。

优点:
1.双链表单次任意位置插入和删除效率较高,比单链表还要效率高
2.双链表不存在空间浪费,按需申请和释放空间
3.双链表的一个结点可以访问前后结点(相比于单链表)
缺点:
1.和单链表一样,虽然双链表访问尾结点快,但是任然不支持随机访问
2.cpu高速缓存命中率低,因为结点地址可能是分散的。


本次双链表的讲解就到此结束啦,各位看官能否与我双向奔赴来个三连呢! ! !

这篇关于【数据结构】双向奔赴的爱恋 --- 双向链表的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/850225

相关文章

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

csu1329(双向链表)

题意:给n个盒子,编号为1到n,四个操作:1、将x盒子移到y的左边;2、将x盒子移到y的右边;3、交换x和y盒子的位置;4、将所有的盒子反过来放。 思路分析:用双向链表解决。每个操作的时间复杂度为O(1),用数组来模拟链表,下面的代码是参考刘老师的标程写的。 代码如下: #include<iostream>#include<algorithm>#include<stdio.h>#

6.1.数据结构-c/c++堆详解下篇(堆排序,TopK问题)

上篇:6.1.数据结构-c/c++模拟实现堆上篇(向下,上调整算法,建堆,增删数据)-CSDN博客 本章重点 1.使用堆来完成堆排序 2.使用堆解决TopK问题 目录 一.堆排序 1.1 思路 1.2 代码 1.3 简单测试 二.TopK问题 2.1 思路(求最小): 2.2 C语言代码(手写堆) 2.3 C++代码(使用优先级队列 priority_queue)

深入手撕链表

链表 分类概念单链表增尾插头插插入 删尾删头删删除 查完整实现带头不带头 双向链表初始化增尾插头插插入 删查完整代码 数组 分类 #mermaid-svg-qKD178fTiiaYeKjl {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-

建立升序链表

题目1181:遍历链表 时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:2744 解决:1186 题目描述: 建立一个升序链表并遍历输出。 输入: 输入的每个案例中第一行包括1个整数:n(1<=n<=1000),接下来的一行包括n个整数。 输出: 可能有多组测试数据,对于每组数据, 将n个整数建立升序链表,之后遍历链表并输出。 样例输

《数据结构(C语言版)第二版》第八章-排序(8.3-交换排序、8.4-选择排序)

8.3 交换排序 8.3.1 冒泡排序 【算法特点】 (1) 稳定排序。 (2) 可用于链式存储结构。 (3) 移动记录次数较多,算法平均时间性能比直接插入排序差。当初始记录无序,n较大时, 此算法不宜采用。 #include <stdio.h>#include <stdlib.h>#define MAXSIZE 26typedef int KeyType;typedef char In

【每日一题】LeetCode 2181.合并零之间的节点(链表、模拟)

【每日一题】LeetCode 2181.合并零之间的节点(链表、模拟) 题目描述 给定一个链表,链表中的每个节点代表一个整数。链表中的整数由 0 分隔开,表示不同的区间。链表的开始和结束节点的值都为 0。任务是将每两个相邻的 0 之间的所有节点合并成一个节点,新节点的值为原区间内所有节点值的和。合并后,需要移除所有的 0,并返回修改后的链表头节点。 思路分析 初始化:创建一个虚拟头节点

学习记录:js算法(二十八):删除排序链表中的重复元素、删除排序链表中的重复元素II

文章目录 删除排序链表中的重复元素我的思路解法一:循环解法二:递归 网上思路 删除排序链表中的重复元素 II我的思路网上思路 总结 删除排序链表中的重复元素 给定一个已排序的链表的头 head , 删除所有重复的元素,使每个元素只出现一次 。返回 已排序的链表 。 图一 图二 示例 1:(图一)输入:head = [1,1,2]输出:[1,2]示例 2:(图

【408数据结构】散列 (哈希)知识点集合复习考点题目

苏泽  “弃工从研”的路上很孤独,于是我记下了些许笔记相伴,希望能够帮助到大家    知识点 1. 散列查找 散列查找是一种高效的查找方法,它通过散列函数将关键字映射到数组的一个位置,从而实现快速查找。这种方法的时间复杂度平均为(

浙大数据结构:树的定义与操作

四种遍历 #include<iostream>#include<queue>using namespace std;typedef struct treenode *BinTree;typedef BinTree position;typedef int ElementType;struct treenode{ElementType data;BinTree left;BinTre