关于 boost::asio::strand 初始化 socket、stream、resolver、deadline_timer 对象

本文主要是介绍关于 boost::asio::strand 初始化 socket、stream、resolver、deadline_timer 对象,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在 boost::asio 之中默认情况下,大家使用 io_context 来为这些对象初始化传递的执行者,但我需要这里说明。

对于 boost::asio 构造类似 socket 对象必须构造传递 io_context 是个伪命题,boost::asio 对象并非只允许传递 boost::asio::io_context【重点】。
 

它的构造是接收一个 executor 的,这个 executor 不是非必须是 io_context,这个大家必须要了解,但凡仔细看过文档应该都明白才对,但可惜的国内很多人并不愿意多仔细的看看文档,看着那些所谓大牛的 aiso 经验,贴出来的 demo 代码就算是过了。

这样不好。

在 boost::asio 之中,不同的 asio 对象封装所需要构造传递的执行器略微有些限制,但可以确定的是都不允许:

boost::asio::io_context::strand 传递进去执行,对于传递 strand 的正确做法为:

声明:

            typedef boost::asio::io_context::executor_type                  executor_type;
            typedef boost::asio::strand<executor_type>                      strand;

构造:

方法一:

boost::asio::io_context ioc;

strand(ioc.get_executor());

方法二:

boost::asio::io_context ioc;

boost::asio::make_strand(ioc)

把这个构造出来的 strand 传递给 socket、stream 对象的构造函数就可以了。

当然,上面提到了 asio 的构造初始化并非只是 io_context,只要符合 executor 就可以。

比如:

boost::asio::any_io_executor、boost::asio:::any_completion_executor 就没问题,取决于每个不同 asio 对象构造执行器的限制类型。

比如:

如果我们希望 socket 都运行在一个 strand 上面,按照那些所谓大牛,文档都看不仔细的情况下,大概率是让人们构造一个共享的 boost::asio::io_context::strand,然后在 socket 的异步行为回调函数上都 warp 一次。

但我不建议大家这么做,正确的做法是上述形式,构造 strand 的执行器并在构造的时候传递给 socket 即可,这也包括其它的 asio 对象,如 resolver、DNS解析对象。

本人在此处实现了一个封装,用来模拟串化 io_context。

/* https://www.boost.org/doc/libs/1_71_0/libs/beast/example/websocket/client/async/websocket_client_async.cpp */ 
/* https://fossies.org/linux/boost/libs/asio/test/strand.cpp */
namespace poost {namespace asio {class io_context final {public:typedef boost::asio::io_context::executor_type                  executor_type;typedef boost::asio::strand<executor_type>                      strand;typedef boost::asio::io_context::work                           work;public:io_context() noexcept : io_context(ppp::make_shared_object<boost::asio::io_context>()) {}io_context(const std::shared_ptr<boost::asio::io_context>& context) noexcept                                                                             : context_(context) /* context_->get_executor() */, strand_(boost::asio::make_strand(*context)) {}public:strand&                                                         get_strand() const noexcept { return ppp::constantof(strand_); }boost::asio::io_context&                                        get_context() const noexcept { return *context_; }std::shared_ptr<boost::asio::io_context>                        ptr_context() const noexcept { return context_;}executor_type                                                   get_executor() const noexcept { boost::asio::io_context& context = get_context();return context.get_executor(); }std::shared_ptr<ppp::Byte>                                      ptr_buffers() const noexcept {return buffers_;}void                                                            ptr_buffers(const std::shared_ptr<ppp::Byte>& buffers) const noexcept {ppp::constantof(buffers_) = buffers;}public:template <typename LegacyCompletionHandler>                     void                                                            post(LegacyCompletionHandler&& handler) const noexcept { strand& strand = get_strand();boost::asio::post(strand, handler); }template <typename LegacyCompletionHandler>                     void                                                            dispatch(LegacyCompletionHandler&& handler) const noexcept { strand& strand = get_strand();boost::asio::dispatch(strand, handler); }public:void                                                            restart() noexcept { boost::asio::io_context& context = get_context();context.restart(); } void                                                            run() noexcept;          void                                                            run(boost::system::error_code& ec) noexcept { boost::asio::io_context& context = get_context();context.run(ec); }void                                                            stop() noexcept { boost::asio::io_context& context = get_context();context.stop(); }bool                                                            stopped() noexcept { boost::asio::io_context& context = get_context();return context.stopped(); }private:mutable std::shared_ptr<boost::asio::io_context>                context_;mutable strand                                                  strand_;mutable std::shared_ptr<ppp::Byte>                              buffers_;};inline void                                                         io_context::run() noexcept {boost::system::error_code ec; run(ec); boost::asio::detail::throw_error(ec);}}
}

如何在 socket 上面使用它?

std::shared_ptr<poost::asio::io_context> context;

boost::asio::ip::udp::socket socket_(context->get_strand());

是不是很直观跟简单,那么运行效果会是什么样子呢?

看看线程的调用堆栈是会重叠一层 strand 滴:(所以根本不需要额外的 strand 手动处理)

这篇关于关于 boost::asio::strand 初始化 socket、stream、resolver、deadline_timer 对象的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/849822

相关文章

JVM 的类初始化机制

前言 当你在 Java 程序中new对象时,有没有考虑过 JVM 是如何把静态的字节码(byte code)转化为运行时对象的呢,这个问题看似简单,但清楚的同学相信也不会太多,这篇文章首先介绍 JVM 类初始化的机制,然后给出几个易出错的实例来分析,帮助大家更好理解这个知识点。 JVM 将字节码转化为运行时对象分为三个阶段,分别是:loading 、Linking、initialization

ASIO网络调试助手之一:简介

多年前,写过几篇《Boost.Asio C++网络编程》的学习文章,一直没机会实践。最近项目中用到了Asio,于是抽空写了个网络调试助手。 开发环境: Win10 Qt5.12.6 + Asio(standalone) + spdlog 支持协议: UDP + TCP Client + TCP Server 独立的Asio(http://www.think-async.com)只包含了头文件,不依

c++的初始化列表与const成员

初始化列表与const成员 const成员 使用const修饰的类、结构、联合的成员变量,在类对象创建完成前一定要初始化。 不能在构造函数中初始化const成员,因为执行构造函数时,类对象已经创建完成,只有类对象创建完成才能调用成员函数,构造函数虽然特殊但也是成员函数。 在定义const成员时进行初始化,该语法只有在C11语法标准下才支持。 初始化列表 在构造函数小括号后面,主要用于给

Java第二阶段---09类和对象---第三节 构造方法

第三节 构造方法 1.概念 构造方法是一种特殊的方法,主要用于创建对象以及完成对象的属性初始化操作。构造方法不能被对象调用。 2.语法 //[]中内容可有可无 访问修饰符 类名([参数列表]){ } 3.示例 public class Car {     //车特征(属性)     public String name;//车名   可以直接拿来用 说明它有初始值     pu

HTML5自定义属性对象Dataset

原文转自HTML5自定义属性对象Dataset简介 一、html5 自定义属性介绍 之前翻译的“你必须知道的28个HTML5特征、窍门和技术”一文中对于HTML5中自定义合法属性data-已经做过些介绍,就是在HTML5中我们可以使用data-前缀设置我们需要的自定义属性,来进行一些数据的存放,例如我们要在一个文字按钮上存放相对应的id: <a href="javascript:" d

JavaSE(十三)——函数式编程(Lambda表达式、方法引用、Stream流)

函数式编程 函数式编程 是 Java 8 引入的一个重要特性,它允许开发者以函数作为一等公民(first-class citizens)的方式编程,即函数可以作为参数传递给其他函数,也可以作为返回值。 这极大地提高了代码的可读性、可维护性和复用性。函数式编程的核心概念包括高阶函数、Lambda 表达式、函数式接口、流(Streams)和 Optional 类等。 函数式编程的核心是Lambda

PHP7扩展开发之对象方式使用lib库

前言 上一篇文章,我们使用的是函数方式调用lib库。这篇文章我们将使用对象的方式调用lib库。调用代码如下: <?php $hello = new hello(); $result = $hello->get(); var_dump($result); ?> 我们将在扩展中实现hello类。hello类中将依赖lib库。 代码 基础代码 这个扩展,我们将在say扩展上增加相关代码。sa

hibernate修改数据库已有的对象【简化操作】

陈科肇 直接上代码: /*** 更新新的数据并并未修改旧的数据* @param oldEntity 数据库存在的实体* @param newEntity 更改后的实体* @throws IllegalAccessException * @throws IllegalArgumentException */public void updateNew(T oldEntity,T newEntity

类和对象的定义和调用演示(C++)

我习惯把类的定义放在头文件中 Student.h #define _CRT_SECURE_NO_WARNINGS#include <string>using namespace std;class student{public:char m_name[25];int m_age;int m_score;char* get_name(){return m_name;}int set_name

react笔记 8-19 事件对象、获取dom元素、双向绑定

1、事件对象event 通过事件的event对象获取它的dom元素 run=(event)=>{event.target.style="background:yellowgreen" //event的父级为他本身event.target.getAttribute("aid") //这样便获取到了它的自定义属性aid}render() {return (<div><h2>{